Automated segmentation of dermal fillers in OCT images of mice using convolutional neural networks
We present a system for automatic determination of the intradermal volume of hydrogels based on optical coherence tomography (OCT) and deep learning. Volumetric image data was acquired using a custom-built OCT prototype that employs an akinetic swept laser at ~1310 nm with a bandwidth of 87 nm, prov...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/86177 http://hdl.handle.net/10220/49858 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | We present a system for automatic determination of the intradermal volume of hydrogels based on optical coherence tomography (OCT) and deep learning. Volumetric image data was acquired using a custom-built OCT prototype that employs an akinetic swept laser at ~1310 nm with a bandwidth of 87 nm, providing an axial resolution of ~6.5 μm in tissue. Three-dimensional data sets of a 10×10 mm skin patch comprising the intradermal filler and the surrounding tissue were acquired. A convolutional neural network using a u-net-like architecture was trained from slices of 100 OCT volume data sets where the dermal filler volume was manually annotated. Using six-fold cross-validation, a mean accuracy of 0.9938 and a Jaccard similarity coefficient of 0.879 were achieved. |
---|