Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography

Many different parameters exist for the investigation of tear film dynamics. We present a new tear meniscus segmentation algorithm which automatically extracts tear meniscus area (TMA), height (TMH), depth (TMD) and radius (TMR) from UHR-OCT measurements and apply it to a data set including repeated...

全面介紹

Saved in:
書目詳細資料
Main Authors: Stegmann, Hannes, Aranha dos Santos, Valentin, Messner, Alina, Unterhuber, Angelika, Schmidl, Doreen, Garhöfer, Gerhard, Schmetterer, Leopold, Werkmeister, René Marcel
其他作者: Lee Kong Chian School of Medicine (LKCMedicine)
格式: Article
語言:English
出版: 2019
主題:
在線閱讀:https://hdl.handle.net/10356/86179
http://hdl.handle.net/10220/49857
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
id sg-ntu-dr.10356-86179
record_format dspace
spelling sg-ntu-dr.10356-861792020-11-01T05:11:16Z Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography Stegmann, Hannes Aranha dos Santos, Valentin Messner, Alina Unterhuber, Angelika Schmidl, Doreen Garhöfer, Gerhard Schmetterer, Leopold Werkmeister, René Marcel Lee Kong Chian School of Medicine (LKCMedicine) Tear Film Optical Coherence Tomography Science::Medicine Many different parameters exist for the investigation of tear film dynamics. We present a new tear meniscus segmentation algorithm which automatically extracts tear meniscus area (TMA), height (TMH), depth (TMD) and radius (TMR) from UHR-OCT measurements and apply it to a data set including repeated measurements from ten healthy subjects. Mean values and standard deviations are 0.0174 ± 0.007 mm2, 0.272 ± 0.069 mm, 0.191 ± 0.049 mm and 0.309 ± 0.123 mm for TMA, TMH, TMD and TMR, respectively. A significant correlation was found between all respective tear meniscus parameter pairs (all p < 0.001, all Pearson’s r ≥ 0.657). Challenges, limitations and potential improvements related to the data acquisition and the algorithm itself are discussed. The automatic segmentation of tear meniscus measurements acquired with UHR-OCT might help in a clinical setting to further understand the tear film and related medical conditions like dry eye disease. Published version 2019-09-04T03:03:13Z 2019-12-06T16:17:25Z 2019-09-04T03:03:13Z 2019-12-06T16:17:25Z 2019 Journal Article Stegmann, H., Aranha dos Santos, V., Messner, A., Unterhuber, A., Schmidl, D., Garhöfer, G., . . . Werkmeister, R. M. (2019). Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography. Biomedical Optics Express, 10(6), 2744-2756. doi:10.1364/BOE.10.002744 https://hdl.handle.net/10356/86179 http://hdl.handle.net/10220/49857 10.1364/BOE.10.002744 en Biomedical Optics Express © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved. 13 p. application/pdf
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic Tear Film
Optical Coherence Tomography
Science::Medicine
spellingShingle Tear Film
Optical Coherence Tomography
Science::Medicine
Stegmann, Hannes
Aranha dos Santos, Valentin
Messner, Alina
Unterhuber, Angelika
Schmidl, Doreen
Garhöfer, Gerhard
Schmetterer, Leopold
Werkmeister, René Marcel
Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography
description Many different parameters exist for the investigation of tear film dynamics. We present a new tear meniscus segmentation algorithm which automatically extracts tear meniscus area (TMA), height (TMH), depth (TMD) and radius (TMR) from UHR-OCT measurements and apply it to a data set including repeated measurements from ten healthy subjects. Mean values and standard deviations are 0.0174 ± 0.007 mm2, 0.272 ± 0.069 mm, 0.191 ± 0.049 mm and 0.309 ± 0.123 mm for TMA, TMH, TMD and TMR, respectively. A significant correlation was found between all respective tear meniscus parameter pairs (all p < 0.001, all Pearson’s r ≥ 0.657). Challenges, limitations and potential improvements related to the data acquisition and the algorithm itself are discussed. The automatic segmentation of tear meniscus measurements acquired with UHR-OCT might help in a clinical setting to further understand the tear film and related medical conditions like dry eye disease.
author2 Lee Kong Chian School of Medicine (LKCMedicine)
author_facet Lee Kong Chian School of Medicine (LKCMedicine)
Stegmann, Hannes
Aranha dos Santos, Valentin
Messner, Alina
Unterhuber, Angelika
Schmidl, Doreen
Garhöfer, Gerhard
Schmetterer, Leopold
Werkmeister, René Marcel
format Article
author Stegmann, Hannes
Aranha dos Santos, Valentin
Messner, Alina
Unterhuber, Angelika
Schmidl, Doreen
Garhöfer, Gerhard
Schmetterer, Leopold
Werkmeister, René Marcel
author_sort Stegmann, Hannes
title Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography
title_short Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography
title_full Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography
title_fullStr Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography
title_full_unstemmed Automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography
title_sort automatic assessment of tear film and tear meniscus parameters in healthy subjects using ultrahigh-resolution optical coherence tomography
publishDate 2019
url https://hdl.handle.net/10356/86179
http://hdl.handle.net/10220/49857
_version_ 1683493051260993536