Laser cooling of organic–inorganic lead halide perovskites

Optical irradiation with suitable energy can cool solids, a phenomenon known as optical refrigeration, first proposed in 1929 and experimentally achieved in ytterbium-doped glasses in 1995. Since then, considerable progress has been made in various rare earth element-doped materials, with a recent r...

Full description

Saved in:
Bibliographic Details
Main Authors: Ha, Son-Tung, Shen, Chao, Zhang, Jun, Xiong, Qihua
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10356/86319
http://hdl.handle.net/10220/44001
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Optical irradiation with suitable energy can cool solids, a phenomenon known as optical refrigeration, first proposed in 1929 and experimentally achieved in ytterbium-doped glasses in 1995. Since then, considerable progress has been made in various rare earth element-doped materials, with a recent record of cooling to 91 K directly from ambient temperatures. For practical use and to suit future applications of optical refrigeration, the discovery of materials with facile and scalable synthesis and high cooling power density will be required. Herein we present the realization of a net cooling of 23.0 K in micrometre-thick 3D CH3NH3PbI3 (MAPbI3) and 58.7 K in exfoliated 2D (C6H5C2H4NH3)2PbI4 (PhEPbI4) perovskite crystals directly from room temperature. We found that the perovskite crystals exhibit strong photoluminescence upconversion and near unity external quantum efficiency, properties that are responsible for the realization of net laser cooling. Our findings indicate that solution-processed perovskite thin films may be a highly suitable candidate for constructing integrated optical cooler devices.