Phenoxazine Derivative Operates as an Efficient Surface-Grafted Molecular Relay to Enhance the Performance and Stability of CdS- and CdSe-Sensitized TiO2 Solar Cells

We report on a new phenoxazine derivative, 10-butyl-phenoxazine-3-carboxylic acid (BPCA), that we designed to operate as a molecular relay in semiconductor-sensitized solar cells (SSCs). After BPCA surface modification and in the presence of a cobalt-bipyridyl complex acting as a redox mediator, bot...

Full description

Saved in:
Bibliographic Details
Main Authors: Shen, Chao, Wang, Xingzhu, Tang, Shasha, Courté, Marc, Fichou, Denis
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2017
Subjects:
Online Access:https://hdl.handle.net/10356/86325
http://hdl.handle.net/10220/44004
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We report on a new phenoxazine derivative, 10-butyl-phenoxazine-3-carboxylic acid (BPCA), that we designed to operate as a molecular relay in semiconductor-sensitized solar cells (SSCs). After BPCA surface modification and in the presence of a cobalt-bipyridyl complex acting as a redox mediator, both TiO2/CdS/BPCA and TiO2/CdSe/BPCA SSCs exhibit enhanced photovoltaic performance and stability. In particular, the power conversion efficiencies of CdS and CdSe-based solar cells are improved by 90 % and 57 %, respectively. Furthermore, after 300 s the JSC of TiO2/CdS/BPCA SSCs is stabilized at 30 % of its initial value, while in the same time CdS-based devices retain only 1 % of their initial JSC. The origin of the improvement arises from the excellent electron-donating property of BPCA and its role as a powerful molecular relay in non-polysulfide based SSCs.