Sampling-based adaptive bounding evolutionary algorithm for continuous optimization problems
This paper proposes a novel sampling-based adaptive bounding evolutionary algorithm termed SABEA that is capable of dynamically updating the search space during the evolution process for continuous optimization problems. The proposed SABEA adopts two bounding strategies, namely fitness-based boundin...
محفوظ في:
المؤلفون الرئيسيون: | , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/86331 http://hdl.handle.net/10220/43997 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|