Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning
In this work, multifunctional superamphiphobic fabrics with special wettability were constructed by a facile dip-coating or electrospraying process using easily available materials, viz. silica nanoparticles, heptadecafluorononanoic, and fluoroalkyl silane. The obtained HFA–FAS–SiO2 NPs@surface exhi...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , , |
---|---|
مؤلفون آخرون: | |
التنسيق: | مقال |
اللغة: | English |
منشور في: |
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/86552 http://hdl.handle.net/10220/44067 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | In this work, multifunctional superamphiphobic fabrics with special wettability were constructed by a facile dip-coating or electrospraying process using easily available materials, viz. silica nanoparticles, heptadecafluorononanoic, and fluoroalkyl silane. The obtained HFA–FAS–SiO2 NPs@surface exhibited a contact angle (CA) of 166.4 ± 3.7° and 155.9 ± 2.1° to water and hexadecane, respectively. In addition, this surface also showed stable repellency toward various corrosive droplets at a wide range of pH values, including HCl (pH = 1), NaCl (pH = 7), and NaOH (pH = 14) solutions. After immersion in the strong acid and base solutions for 24 h, the cotton surface still maintained excellent anti-wetting property. The surface was durable enough to withstand 120 cycles of abrasion and 5 cycles of accelerated standard laundry and still kept a water CA higher than 140° and an oil CA higher than 120°. Another treatment method adopted in this work, electrospraying has been proved to be able to realize asymmetric wetting with one side displaying highly anti-wetting behavior and the other side retaining the inherent hydrophilic and oleophilic nature of the pristine cotton fabric. Based on this special wettability, the obtained fabric could display a one-way directional transport feature. This method can also be extended to create hydrophilically and oleophilically patterned superamphiphobic cotton fabrics using a template. This novel fabric is useful for the development of intelligent cellulose-based substrates for various applications. |
---|