Type-I hyperbolic metasurfaces for highly-squeezed designer polaritons with negative group velocity

Hyperbolic polaritons in van der Waals materials and metamaterial heterostructures provide unprecedented control over light-matter interaction at extreme nanoscales. Here we propose a concept of type-I hyperbolic metasurface supporting highly-squeezed magnetic designer polaritons, which act as magne...

Full description

Saved in:
Bibliographic Details
Main Authors: Yang, Yihao, Qin, Pengfei, Lin, Xiao, Li, Erping, Wang, Zuojia, Zhang, Baile, Chen, Hongsheng
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/86571
http://hdl.handle.net/10220/49862
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Hyperbolic polaritons in van der Waals materials and metamaterial heterostructures provide unprecedented control over light-matter interaction at extreme nanoscales. Here we propose a concept of type-I hyperbolic metasurface supporting highly-squeezed magnetic designer polaritons, which act as magnetic analogs of hyperbolic polaritons in the hexagonal boron nitride (h-BN) in the first Reststrahlen band. Compared with the natural h-BN, the size and spacing of the metasurface unit cell can be readily engineered, allowing for manipulating designer polaritons in frequency and space with greater flexibility. Microwave experimental measurements display a cone-like dispersion in momentum space, exhibiting an effective refractive index up to 60 and a group velocity down to c/400. Tailoring the metasurface, we demonstrate an ultra-compact integrated designer polariton circuit including high-transmission 90° sharp bending waveguides and waveguide splitters. The present metasurface could serve as a platform for polaritonics, and find applications in waveguiding, terahertz sensing, subdiffraction focusing/imaging, low-threshold terahertz Cherenkov radiation, and wireless energy transfer.