Net growth rate of continuum heterogeneous biofilms with inhibition kinetics

Biofilm systems can be modeled using a variety of analytical and numerical approaches, usually by making simplifying assumptions regarding biofilm heterogeneity and activity as well as effective diffusivity. Inhibition kinetics, albeit common in experimental systems, are rarely considered and analyt...

Full description

Saved in:
Bibliographic Details
Main Authors: Gonzo, Elio Emilio, Wuertz, Stefan, Rajal, Veronica Beatriz
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/86620
http://hdl.handle.net/10220/45335
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Biofilm systems can be modeled using a variety of analytical and numerical approaches, usually by making simplifying assumptions regarding biofilm heterogeneity and activity as well as effective diffusivity. Inhibition kinetics, albeit common in experimental systems, are rarely considered and analytical approaches are either lacking or consider effective diffusivity of the substrate and the biofilm density to remain constant. To address this obvious knowledge gap an analytical procedure to estimate the effectiveness factor (dimensionless substrate mass flux at the biofilm-fluid interface) was developed for a continuum heterogeneous biofilm with multiple limiting-substrate Monod kinetics to different types of inhibition kinetics. The simple perturbation technique, previously validated to quantify biofilm activity, was applied to systems where either the substrate or the inhibitor is the limiting component, and cases where the inhibitor is a reaction product or the substrate also acts as the inhibitor. Explicit analytical equations are presented for the effectiveness factor estimation and, therefore, the calculation of biomass growth rate or limiting substrate/inhibitor consumption rate, for a given biofilm thickness. The robustness of the new biofilm model was tested using kinetic parameters experimentally determined for the growth of Pseudomonas putida CCRC 14365 on phenol. Several additional cases have been analyzed, including examples where the effectiveness factor can reach values greater than unity, characteristic of systems with inhibition kinetics. Criteria to establish when the effectiveness factor can reach values greater than unity in each of the cases studied are also presented.