Iron Oxide Nanoparticle-Powered Micro-Optical Coherence Tomography for in Situ Imaging the Penetration and Swelling of Polymeric Microneedles in the Skin
In recent years, polymeric microneedles (MNs) have attracted keen interests among researchers because of their applicability in transdermal drug delivery and interstitial skin fluid (ISF) extraction. When designing and characterizing such devices, it is critical to monitor their real-time in vitro a...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/87034 http://hdl.handle.net/10220/44311 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-87034 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-870342023-12-29T06:52:21Z Iron Oxide Nanoparticle-Powered Micro-Optical Coherence Tomography for in Situ Imaging the Penetration and Swelling of Polymeric Microneedles in the Skin Seeni, Razina Z. Yu, Xiaojun Chang, Hao Chen, Peng Liu, Linbo Xu, Chenjie School of Chemical and Biomedical Engineering School of Electrical and Electronic Engineering NTU-Northwestern Institute for Nanomedicine Iron Oxide Nanoparticles Microneedles In recent years, polymeric microneedles (MNs) have attracted keen interests among researchers because of their applicability in transdermal drug delivery and interstitial skin fluid (ISF) extraction. When designing and characterizing such devices, it is critical to monitor their real-time in vitro and in vivo performances to optimize the desired effects, yet most of the existing methods are incapable of such functions. To address this unmet need, we develop a real-time noninvasive imaging methodology by integrating iron oxide (Fe3O4) nanoparticles into polymeric MNs to enhance image contrast for micro-optical coherence tomography (μOCT) imaging. Using the Fe3O4-integrated polystyrene-block-poly(acrylic acid) (PS-b-PAA) MNs as an example, we evaluate the influences of Fe3O4 concentrations on contrast enhancement in μOCT imaging and visualize the real-time swelling process of polymeric MNs in biological samples for the first time. Our results show that a concentration of ∼4–5 wt % Fe3O4 nanoparticles not only helps achieve the best contrast-to-noise ratio in μOCT imaging, which is 10 times higher than that without Fe3O4 nanoparticles in air and hydrogel, but also enables the real-time changes in the profile of MNs to be observed clearly in their swelling process in skin tissues. On the basis of such findings, we utilize the optimized concentration of Fe3O4 nanoparticles to further quantitatively study the swelling kinetics of PS-b-PAA MNs in agarose hydrogel and fresh skin tissues, which lasts ∼20 and ∼30–35 s, respectively. The suitability of such a methodology for enhancing μOCT imaging would greatly facilitate the development and clinical translation of MN-based medical technologies. NRF (Natl Research Foundation, S’pore) MOE (Min. of Education, S’pore) NMRC (Natl Medical Research Council, S’pore) Accepted version 2018-01-11T03:16:35Z 2019-12-06T16:33:36Z 2018-01-11T03:16:35Z 2019-12-06T16:33:36Z 2017 Journal Article Seeni, R. Z., Yu, X., Chang, H., Chen, P., Liu, L., & Xu, C. (2017). Iron Oxide Nanoparticle-Powered Micro-Optical Coherence Tomography for in Situ Imaging the Penetration and Swelling of Polymeric Microneedles in the Skin. ACS Applied Materials & Interfaces, 9(24), 20340-20347. 1944-8244 https://hdl.handle.net/10356/87034 http://hdl.handle.net/10220/44311 10.1021/acsami.7b00481 en ACS Applied Materials & Interfaces © 2017 American Chemical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by ACS Applied Materials & Interfaces, American Chemical Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1021/acsami.7b00481]. 15 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Iron Oxide Nanoparticles Microneedles |
spellingShingle |
Iron Oxide Nanoparticles Microneedles Seeni, Razina Z. Yu, Xiaojun Chang, Hao Chen, Peng Liu, Linbo Xu, Chenjie Iron Oxide Nanoparticle-Powered Micro-Optical Coherence Tomography for in Situ Imaging the Penetration and Swelling of Polymeric Microneedles in the Skin |
description |
In recent years, polymeric microneedles (MNs) have attracted keen interests among researchers because of their applicability in transdermal drug delivery and interstitial skin fluid (ISF) extraction. When designing and characterizing such devices, it is critical to monitor their real-time in vitro and in vivo performances to optimize the desired effects, yet most of the existing methods are incapable of such functions. To address this unmet need, we develop a real-time noninvasive imaging methodology by integrating iron oxide (Fe3O4) nanoparticles into polymeric MNs to enhance image contrast for micro-optical coherence tomography (μOCT) imaging. Using the Fe3O4-integrated polystyrene-block-poly(acrylic acid) (PS-b-PAA) MNs as an example, we evaluate the influences of Fe3O4 concentrations on contrast enhancement in μOCT imaging and visualize the real-time swelling process of polymeric MNs in biological samples for the first time. Our results show that a concentration of ∼4–5 wt % Fe3O4 nanoparticles not only helps achieve the best contrast-to-noise ratio in μOCT imaging, which is 10 times higher than that without Fe3O4 nanoparticles in air and hydrogel, but also enables the real-time changes in the profile of MNs to be observed clearly in their swelling process in skin tissues. On the basis of such findings, we utilize the optimized concentration of Fe3O4 nanoparticles to further quantitatively study the swelling kinetics of PS-b-PAA MNs in agarose hydrogel and fresh skin tissues, which lasts ∼20 and ∼30–35 s, respectively. The suitability of such a methodology for enhancing μOCT imaging would greatly facilitate the development and clinical translation of MN-based medical technologies. |
author2 |
School of Chemical and Biomedical Engineering |
author_facet |
School of Chemical and Biomedical Engineering Seeni, Razina Z. Yu, Xiaojun Chang, Hao Chen, Peng Liu, Linbo Xu, Chenjie |
format |
Article |
author |
Seeni, Razina Z. Yu, Xiaojun Chang, Hao Chen, Peng Liu, Linbo Xu, Chenjie |
author_sort |
Seeni, Razina Z. |
title |
Iron Oxide Nanoparticle-Powered Micro-Optical Coherence Tomography for in Situ Imaging the Penetration and Swelling of Polymeric Microneedles in the Skin |
title_short |
Iron Oxide Nanoparticle-Powered Micro-Optical Coherence Tomography for in Situ Imaging the Penetration and Swelling of Polymeric Microneedles in the Skin |
title_full |
Iron Oxide Nanoparticle-Powered Micro-Optical Coherence Tomography for in Situ Imaging the Penetration and Swelling of Polymeric Microneedles in the Skin |
title_fullStr |
Iron Oxide Nanoparticle-Powered Micro-Optical Coherence Tomography for in Situ Imaging the Penetration and Swelling of Polymeric Microneedles in the Skin |
title_full_unstemmed |
Iron Oxide Nanoparticle-Powered Micro-Optical Coherence Tomography for in Situ Imaging the Penetration and Swelling of Polymeric Microneedles in the Skin |
title_sort |
iron oxide nanoparticle-powered micro-optical coherence tomography for in situ imaging the penetration and swelling of polymeric microneedles in the skin |
publishDate |
2018 |
url |
https://hdl.handle.net/10356/87034 http://hdl.handle.net/10220/44311 |
_version_ |
1787136752643735552 |