Feasibility and transcriptomic analysis of betalain production by biomembrane surface fermentation of Penicillium novae-zelandiae

In this study, a biomembrane surface fermentation was used to produce red pigments of Penicillium novae-zelandiae, and the significant improvement in pigment production by the addition of 0.4 g/L of tyrosine demonstrated that the red pigments probably contained betalain. Therefore, one red pigment w...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Hailei, Li, Yi, Zhang, Kun, Ma, Yingqun, Li, Ping
Other Authors: Nanyang Environment and Water Research Institute
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/87227
http://hdl.handle.net/10220/44355
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this study, a biomembrane surface fermentation was used to produce red pigments of Penicillium novae-zelandiae, and the significant improvement in pigment production by the addition of 0.4 g/L of tyrosine demonstrated that the red pigments probably contained betalain. Therefore, one red pigment was purified, and identified as 2-decarboxybetanin by high-resolution mass spectrometry (MS) and MS/MS analysis. Transcriptomic analysis revealed the differentially expressed genes and metabolic profile of P. novae-zelandiae in response to different cultivations and exhibited the complete biosynthetic pathway of 2-decarboxybetanin in P. novae-zelandiae. Betalains are important water-soluble nitrogen-containing food coloring agents, obtained mainly from beetroot by chemical extraction. This paper is the first report about the production of betalain by microbial fermentation, and results exhibit the possible use of fungal fermentation in future 2-decarboxybetanin production.