Vector extrapolation methods for accelerating iterative reconstruction methods in limited-data photoacoustic tomography
As limited data photoacoustic tomographic image reconstruction problem is known to be ill-posed, the iterative reconstruction methods were proven to be effective in terms of providing good quality initial pressure distribution. Often, these iterative methods require a large number of iterations to c...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/87373 http://hdl.handle.net/10220/44410 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | As limited data photoacoustic tomographic image reconstruction problem is known to be ill-posed, the iterative reconstruction methods were proven to be effective in terms of providing good quality initial pressure distribution. Often, these iterative methods require a large number of iterations to converge to a solution, in turn making the image reconstruction procedure computationally inefficient. In this work, two variants of vector polynomial extrapolation techniques were deployed to accelerate two standard iterative photoacoustic image reconstruction algorithms, including regularized steepest descent and total variation regularization methods. It is shown using numerical and experimental phantom cases that these extrapolation methods that are proposed in this work can provide significant acceleration (as high as 4.7 times) along with added advantage of improving reconstructed image quality. |
---|