Illusory occlusion affects stereoscopic depth perception

When occlusion and binocular disparity cues conflict, what visual features determine how they combine? Sensory cues, such as T-junctions, have been suggested to be necessary for occlusion to influence stereoscopic depth perception. Here we show that illusory occlusion, with no retinal sensory cues,...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Zhimin, Denison, Rachel N., Whitney, David, Maus, Gerrit W.
Other Authors: School of Humanities and Social Sciences
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/87384
http://hdl.handle.net/10220/45391
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:When occlusion and binocular disparity cues conflict, what visual features determine how they combine? Sensory cues, such as T-junctions, have been suggested to be necessary for occlusion to influence stereoscopic depth perception. Here we show that illusory occlusion, with no retinal sensory cues, interacts with binocular disparity when perceiving depth. We generated illusory occlusion using stimuli filled in across the retinal blind spot. Observers viewed two bars forming a cross with the intersection positioned within the blind spot. One of the bars was presented binocularly with a disparity signal; the other was presented monocularly, extending through the blind spot, with no defined disparity. When the monocular bar was perceived as filled in through the blind spot, it was perceived as occluding the binocular bar, generating illusory occlusion. We found that this illusory occlusion influenced perceived stereoscopic depth: depth estimates were biased to be closer or farther, depending on whether a bar was perceived as in front of or behind the other bar, respectively. Therefore, the perceived relative depth position, based on filling-in cues, set boundaries for interpreting metric stereoscopic depth cues. This suggests that filling-in can produce opaque surface representations that can trump other depth cues such as disparity.