Nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes
A growing number of halogenated organic compounds have been identified as hazardous pollutants. Although numerous advanced oxidative processes have been developed to degrade organohalide compounds, reductive and nucleophilic molecular approaches to dehalogenate organic compounds have rarely been rep...
Saved in:
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/87663 http://hdl.handle.net/10220/47048 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-87663 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-876632023-02-28T19:23:46Z Nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes Das, Siva Prasad Ganguly, Rakesh Li, Yongxin Soo, Han Sen School of Physical and Mathematical Sciences Electrocatalytic Reduction Nickel -ate Complexes DRNTU::Science::Chemistry A growing number of halogenated organic compounds have been identified as hazardous pollutants. Although numerous advanced oxidative processes have been developed to degrade organohalide compounds, reductive and nucleophilic molecular approaches to dehalogenate organic compounds have rarely been reported. In this manuscript, we employ nickel(II)-ate complexes bearing the o-phenylenebis(N-methyloxamide) (Me2opba) tetraanionic ligand as nucleophilic reagents that can react with alkyl halides (methyl up to the bulky isobutyl) by O-alkylation to give their respective imidate products. Four new nickel(II) complexes have been characterized by X-ray crystallography, and the salient structural parameters and FT-IR vibrational bands (∼1655 cm−1) concur with their assignment as the imidate tautomeric form. To the best of our knowledge, this is the first report on the nucleophilic reactivity of NiII(Me2opba) with halogenated organic compounds. The parent nickel(II) Me2opba complex exhibits reversible electrochemical oxidation and reduction behavior. As a proof of concept, NiII(Me2opba) and its alkylated congeners were utilized for the electrocatalytic reduction of chloroform, as a representative, simple polyhalogenated organic molecule that could arise from the oxidative treatment of organic compounds by chlorination. Modest turnover numbers of up to 6 were recorded, with dichloromethane identified as one of the possible products. Future efforts are directed towards bulkier -ate complexes that possess metal-centered instead of ligand-centered nucleophilic activity to create more effective electrocatalysts for the reduction of halogenated organic compounds. NRF (Natl Research Foundation, S’pore) MOE (Min. of Education, S’pore) Accepted version 2018-12-18T05:15:41Z 2019-12-06T16:46:46Z 2018-12-18T05:15:41Z 2019-12-06T16:46:46Z 2016 Journal Article Das, S. P., Ganguly, R., Li, Y., & Soo, H. S. (2016). Nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes. Dalton Transactions, 45(34), 13556-13564. doi:10.1039/C6DT02349E 1477-9226 https://hdl.handle.net/10356/87663 http://hdl.handle.net/10220/47048 10.1039/C6DT02349E en Dalton Transactions © 2016 Royal Society of Chemistry. This is the author created version of a work that has been peer reviewed and accepted for publication by Dalton Transactions, Royal Society of Chemistry. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1039/C6DT02349E]. 8 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Electrocatalytic Reduction Nickel -ate Complexes DRNTU::Science::Chemistry |
spellingShingle |
Electrocatalytic Reduction Nickel -ate Complexes DRNTU::Science::Chemistry Das, Siva Prasad Ganguly, Rakesh Li, Yongxin Soo, Han Sen Nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes |
description |
A growing number of halogenated organic compounds have been identified as hazardous pollutants. Although numerous advanced oxidative processes have been developed to degrade organohalide compounds, reductive and nucleophilic molecular approaches to dehalogenate organic compounds have rarely been reported. In this manuscript, we employ nickel(II)-ate complexes bearing the o-phenylenebis(N-methyloxamide) (Me2opba) tetraanionic ligand as nucleophilic reagents that can react with alkyl halides (methyl up to the bulky isobutyl) by O-alkylation to give their respective imidate products. Four new nickel(II) complexes have been characterized by X-ray crystallography, and the salient structural parameters and FT-IR vibrational bands (∼1655 cm−1) concur with their assignment as the imidate tautomeric form. To the best of our knowledge, this is the first report on the nucleophilic reactivity of NiII(Me2opba) with halogenated organic compounds. The parent nickel(II) Me2opba complex exhibits reversible electrochemical oxidation and reduction behavior. As a proof of concept, NiII(Me2opba) and its alkylated congeners were utilized for the electrocatalytic reduction of chloroform, as a representative, simple polyhalogenated organic molecule that could arise from the oxidative treatment of organic compounds by chlorination. Modest turnover numbers of up to 6 were recorded, with dichloromethane identified as one of the possible products. Future efforts are directed towards bulkier -ate complexes that possess metal-centered instead of ligand-centered nucleophilic activity to create more effective electrocatalysts for the reduction of halogenated organic compounds. |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Das, Siva Prasad Ganguly, Rakesh Li, Yongxin Soo, Han Sen |
format |
Article |
author |
Das, Siva Prasad Ganguly, Rakesh Li, Yongxin Soo, Han Sen |
author_sort |
Das, Siva Prasad |
title |
Nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes |
title_short |
Nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes |
title_full |
Nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes |
title_fullStr |
Nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes |
title_full_unstemmed |
Nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes |
title_sort |
nucleophilic reactivity and electrocatalytic reduction of halogenated organic compounds by nickel o-phenylenedioxamidate complexes |
publishDate |
2018 |
url |
https://hdl.handle.net/10356/87663 http://hdl.handle.net/10220/47048 |
_version_ |
1759856980467384320 |