The cover number of a matrix and its algorithmic applications
Given a matrix A, we study how many epsilon-cubes are required to cover the convex hull of the columns of A. We show bounds on this cover number in terms of VC dimension and the gamma_2 norm and give algorithms for enumerating elements of a cover. This leads to algorithms for computing approximate N...
Saved in:
Main Authors: | Lee, Troy, Alon, Noga, Shraibman, Adi |
---|---|
其他作者: | School of Physical and Mathematical Sciences |
格式: | Article |
語言: | English |
出版: |
2018
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/87666 http://hdl.handle.net/10220/46788 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
LARGE GAMES AND INCOMPLETE INFORMATION GAMES
由: XU HANPING
出版: (2023) -
Non-cooperative games on hyperfinite Loeb spaces
由: Khan, M.A., et al.
出版: (2014) -
Profit Maximization for Viral Marketing in Online Social Networks
由: Tang, Jing, et al.
出版: (2016) -
The geometry of fractional stable matchings and its applications
由: Teo, C.-P., et al.
出版: (2013) -
Approximation algorithms for general one-warehouse multi-retailer systems
由: Shen, Z.-J.M., et al.
出版: (2013)