Graph homomorphisms for quantum players

A homomorphism from a graph X to a graph Y is an adjacency preserving mapping f:V(X) -> V(Y). We consider a nonlocal game in which Alice and Bob are trying to convince a verifier with certainty that a graph X admits a homomorphism to Y. This is a generalization of the well-studied graph coloring...

Full description

Saved in:
Bibliographic Details
Main Authors: Mančinska, Laura, Roberson, David
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/87672
http://hdl.handle.net/10220/46786
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:A homomorphism from a graph X to a graph Y is an adjacency preserving mapping f:V(X) -> V(Y). We consider a nonlocal game in which Alice and Bob are trying to convince a verifier with certainty that a graph X admits a homomorphism to Y. This is a generalization of the well-studied graph coloring game. Via systematic study of quantum homomorphisms we prove new results for graph coloring. Most importantly, we show that the Lovász theta number of the complement lower bounds the quantum chromatic number, which itself is not known to be computable. We also show that other quantum graph parameters, such as quantum independence number, can differ from their classical counterparts. Finally, we show that quantum homomorphisms closely relate to zero-error channel capacity. In particular, we use quantum homomorphisms to construct graphs for which entanglement-assistance increases their one-shot zero-error capacity.