Nanoplasmonic sensing from the human vision perspective
Localized surface plasmon resonance (LSPR) constitutes a versatile technique for biodetection, exploiting the sensitivity of plasmonic nanostructures to small changes in refractive index. The optical shift in the LSPR band caused by molecular interactions in the vicinity of the nanostructures are ty...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/87705 http://hdl.handle.net/10220/45467 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-87705 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-877052023-07-14T15:52:02Z Nanoplasmonic sensing from the human vision perspective Chen, Peng Liu, Xiaohu Goyal, Garima Tran, Nhung Thi Ho, James Chin Shing Wang, Yi Aili, Daniel Liedberg, Bo School of Materials Science & Engineering Interdisciplinary Graduate School (IGS) Centre for Biomimetic Sensor Science Molecular Binding Nanoplasmonics Localized surface plasmon resonance (LSPR) constitutes a versatile technique for biodetection, exploiting the sensitivity of plasmonic nanostructures to small changes in refractive index. The optical shift in the LSPR band caused by molecular interactions in the vicinity of the nanostructures are typically <5 nm and can readily be detected by a spectrophotometer. Widespread use of LSPR-based sensors require cost-effective devices and would benefit from sensing schemes that enables use of very simple spectrophotometers or even naked-eye detection. This paper describes a new strategy facilitating visualization of minute optical responses in nanoplasmonic bioassays by taking into account the physiology of human color vision. We demonstrate, using a set of nine different plasmonic nanoparticles, that the cyan to green transition zone at ∼500 nm is optimal for naked-eye detection of color changes. In this wavelength range, it is possible to detect a color change corresponding to a wavelength shift of ∼2–3 nm induced by refractive index changes in the medium or by molecular binding to the surface of the nanoparticles. This strategy also can be utilized to improve the performance of aggregation-based nanoplasmonic colorimetric assays, which enables semiquantitative naked-eye detection of matrix metalloproteinase 7 (MMP7) activity at concentrations that are at least 5 times lower than previously reported assays using spherical gold nanoparticles. We foresee significant potential of this strategy in medical diagnostic and environmental monitoring, especially in situations where basic laboratory infrastructure is sparse or even nonexistent. Finally, we demonstrate that the developed concept can be used in combination with cell phone technology and red–green–blue (RGB) analysis for sensitive and quantitative detection of MMP7. Accepted version 2018-08-06T04:32:43Z 2019-12-06T16:47:37Z 2018-08-06T04:32:43Z 2019-12-06T16:47:37Z 2018 Journal Article Chen, P., Liu, X., Goyal, G., Tran, N. T., Ho, J. C. S., Wang, Y., et al. (2018). Nanoplasmonic sensing from the human vision perspective. Analytical Chemistry, 90(7), 4916-4924. 0003-2700 https://hdl.handle.net/10356/87705 http://hdl.handle.net/10220/45467 10.1021/acs.analchem.8b00597 en Analytical Chemistry © 2018 American Chemical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by Analytical Chemistry, American Chemical Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1021/acs.analchem.8b00597]. 10 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Molecular Binding Nanoplasmonics |
spellingShingle |
Molecular Binding Nanoplasmonics Chen, Peng Liu, Xiaohu Goyal, Garima Tran, Nhung Thi Ho, James Chin Shing Wang, Yi Aili, Daniel Liedberg, Bo Nanoplasmonic sensing from the human vision perspective |
description |
Localized surface plasmon resonance (LSPR) constitutes a versatile technique for biodetection, exploiting the sensitivity of plasmonic nanostructures to small changes in refractive index. The optical shift in the LSPR band caused by molecular interactions in the vicinity of the nanostructures are typically <5 nm and can readily be detected by a spectrophotometer. Widespread use of LSPR-based sensors require cost-effective devices and would benefit from sensing schemes that enables use of very simple spectrophotometers or even naked-eye detection. This paper describes a new strategy facilitating visualization of minute optical responses in nanoplasmonic bioassays by taking into account the physiology of human color vision. We demonstrate, using a set of nine different plasmonic nanoparticles, that the cyan to green transition zone at ∼500 nm is optimal for naked-eye detection of color changes. In this wavelength range, it is possible to detect a color change corresponding to a wavelength shift of ∼2–3 nm induced by refractive index changes in the medium or by molecular binding to the surface of the nanoparticles. This strategy also can be utilized to improve the performance of aggregation-based nanoplasmonic colorimetric assays, which enables semiquantitative naked-eye detection of matrix metalloproteinase 7 (MMP7) activity at concentrations that are at least 5 times lower than previously reported assays using spherical gold nanoparticles. We foresee significant potential of this strategy in medical diagnostic and environmental monitoring, especially in situations where basic laboratory infrastructure is sparse or even nonexistent. Finally, we demonstrate that the developed concept can be used in combination with cell phone technology and red–green–blue (RGB) analysis for sensitive and quantitative detection of MMP7. |
author2 |
School of Materials Science & Engineering |
author_facet |
School of Materials Science & Engineering Chen, Peng Liu, Xiaohu Goyal, Garima Tran, Nhung Thi Ho, James Chin Shing Wang, Yi Aili, Daniel Liedberg, Bo |
format |
Article |
author |
Chen, Peng Liu, Xiaohu Goyal, Garima Tran, Nhung Thi Ho, James Chin Shing Wang, Yi Aili, Daniel Liedberg, Bo |
author_sort |
Chen, Peng |
title |
Nanoplasmonic sensing from the human vision perspective |
title_short |
Nanoplasmonic sensing from the human vision perspective |
title_full |
Nanoplasmonic sensing from the human vision perspective |
title_fullStr |
Nanoplasmonic sensing from the human vision perspective |
title_full_unstemmed |
Nanoplasmonic sensing from the human vision perspective |
title_sort |
nanoplasmonic sensing from the human vision perspective |
publishDate |
2018 |
url |
https://hdl.handle.net/10356/87705 http://hdl.handle.net/10220/45467 |
_version_ |
1772825897375629312 |