Modification of polyamide-urethane (PAUt) thin film composite membrane for improving the reverse osmosis performance

In the current study, the poly (amide-urethane) (PAUt) membranes were successfully fabricated by interfacial polymerization of m-phenylenediamine (MPD) and 5-choroformyloxyisophaloyl chloride (CFIC) on the polysulfone substrates. Two modification methods based on layer-by-layer assembly were applied...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, Li-Fen, Gu, Xing-Ling, Qi, Sa-Ren, Xie, Xin, Li, Rui-Han, Li, Ke, Yu, Chun-Yang, Gao, Cong-Jie
Other Authors: Nanyang Environment and Water Research Institute
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/87755
http://hdl.handle.net/10220/45542
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In the current study, the poly (amide-urethane) (PAUt) membranes were successfully fabricated by interfacial polymerization of m-phenylenediamine (MPD) and 5-choroformyloxyisophaloyl chloride (CFIC) on the polysulfone substrates. Two modification methods based on layer-by-layer assembly were applied to modify the PAUt membrane surface to achieve antifouling property: 1. Chitosan (CS) was directly self-assembled on the PAUt membrane (i.e., PAUt-CS); and 2. polydimethyl diallyl ammonium chloride (PDDA), polystyrene sulfonate (PSS), and CS were successively self-assembled on the membrane surface (i.e., PAUt-PDDA/PSS/CS). The resultant membranes were symmetrically characterized by Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Contact Angle Meter (CAM), respectively. The results indicated that the modified membranes had much smoother and more hydrophilic surfaces as compared to the nascent PAUt membrane. Meanwhile, the modified membranes exhibited better reverse osmosis performance in terms of water permeability and salt rejection. After the modified membranes were fouled by lake water, the PAUt-PDDA/PSS/CS membrane presented the best antifouling performance among the three types of membranes. Combining the reverse osmosis performance with the anti-fouling property obviously, the PAUt-PDDA/PSS/CS membrane behaved as a promising candidate to be used in real applications.