Thermal decomposition synthesis of functionalized PdPt alloy nanodendrites with high selectivity for oxygen reduction reaction

Pt-based bimetallic nanostructures have found intriguing applications in electrocatalysis. However, the pristine Pt-based nanostructures generally lack the selectivity for the target reaction because of their high activity for both oxygen reduction reactions (ORRs) and fuel molecule oxidation reacti...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Li, Fu-Min, Gao, Xue-Qing, Li, Shu-Ni, Chen, Yu, Lee, Jong-Min
مؤلفون آخرون: School of Chemical and Biomedical Engineering
التنسيق: مقال
اللغة:English
منشور في: 2018
الموضوعات:
الوصول للمادة أونلاين:https://hdl.handle.net/10356/87790
http://hdl.handle.net/10220/46851
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Pt-based bimetallic nanostructures have found intriguing applications in electrocatalysis. However, the pristine Pt-based nanostructures generally lack the selectivity for the target reaction because of their high activity for both oxygen reduction reactions (ORRs) and fuel molecule oxidation reactions. By employing a recently developed chemical functionalization strategy, the functionalized Pt-based nanostructures have achieved their selectivity for the target reaction in fuel cells. In this work, we report a facile thermal decomposition route to synthesize the polyallylamine (PAH)-functionalized Pd–Pt bimetallic core–shell nanodendrites with a Pd-rich PdPt alloy core and a Pt-rich PtPd alloy shell (PdPt@PtPd CSNDs) by using PAH that serves as a complexant, reductant and chemical functionalization molecule. The composition, morphology and structure of PdPt@PtPd CSNDs are characterized in detail. Compared with commercial Pt black electrocatalyst, the PAH-functionalized PdPt@PtPd CSNDs show improved electrocatalytic activity and durability for the ORR, and achieve good selectivity for the ORR in the presence of ethanol molecules. The study shows a promising cathode electrocatalyst for direct alcohol fuel cells (DAFCs).