Design of an experimental platform for hybridization of atomic and superconducting quantum systems
Hybrid quantum systems have the potential of mitigating current challenges in developing a scalable quantum computer. Of particular interest is the hybridization between atomic and superconducting qubits. We demonstrate an experimental setup for transferring and trapping ultracold atoms inside a mil...
Saved in:
Main Authors: | , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/87814 http://hdl.handle.net/10220/49300 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Hybrid quantum systems have the potential of mitigating current challenges in developing a scalable quantum computer. Of particular interest is the hybridization between atomic and superconducting qubits. We demonstrate an experimental setup for transferring and trapping ultracold atoms inside a millikelvin cryogenic environment, where interactions between atomic and superconducting qubits may be established, paving the way for hybrid quantum systems. We prepare 87Rb atoms in a conventional magneto-optical trap and transport them via a magnetic conveyor belt into a UHV compatible dilution refrigerator with optical access. We store 5×108 atoms with a lifetime of 794 s in the vicinity of the millikelvin stage. |
---|