The unified creep-fatigue equation for stainless steel 316

Background—The creep-fatigue properties of stainless steel 316 are of interest because of the wide use of this material in demanding service environments, such as the nuclear industry. Need—A number of models exist to describe creep-fatigue behaviours, but they are limited by the need to obtain spec...

Full description

Saved in:
Bibliographic Details
Main Authors: Pons, Dirk John, Liu, Dan, Wong, Ee-hua
Other Authors: Energy Research Institute @ NTU (ERI@N)
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/87860
http://hdl.handle.net/10220/46865
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Background—The creep-fatigue properties of stainless steel 316 are of interest because of the wide use of this material in demanding service environments, such as the nuclear industry. Need—A number of models exist to describe creep-fatigue behaviours, but they are limited by the need to obtain specialized coefficients from a large number of experiments, which are time-consuming and expensive. Also, they do not generalise to other situations of temperature and frequency. There is a need for improved formulations for creep-fatigue, with coefficients that determinable directly from the existing and simple creep-fatigue tests and creep rupture tests. Outcomes—A unified creep-fatigue equation is proposed, based on an extension of the Coffin-Manson equation, to introduce dependencies on temperature and frequency. The equation may be formulated for strain as εp=C0c(T,t,εp)N−β0 , or as a power-law εp=C0c(T,t)N−β0b(T,t) . These were then validated against existing experimental data. The equations provide an excellent fit to data (r2 = 0.97 or better). Originality—This work develops a novel formulation for creep-fatigue that accommodates temperature and frequency. The coefficients can be obtained with minimum experimental effort, being based on standard rather than specialized tests.