Developing breakage models relating morphological data to the milling behaviour of flame synthesised titania particles

A detailed population balance model is used to relate the reactor conditions of flame synthesised titanium dioxide particles to their milling behaviour. Breakage models are developed that utilise morphological data captured by a detailed particle model to relate the structure of aggregate particles...

Full description

Saved in:
Bibliographic Details
Main Authors: Lindberg, Casper, Akroyd, Jethro, Kraft, Markus
Other Authors: School of Chemical and Biomedical Engineering
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/88023
http://hdl.handle.net/10220/44500
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:A detailed population balance model is used to relate the reactor conditions of flame synthesised titanium dioxide particles to their milling behaviour. Breakage models are developed that utilise morphological data captured by a detailed particle model to relate the structure of aggregate particles to their size-reduction behaviour in the post-synthesis milling process. Simulations of a laboratory-scale hot wall reactor are consistent with experimental data and milling curves predicted by the breakage models exhibit features consistent with experimental observations. The selected breakage model considers the overall fractal structure of the aggregate particles as well as the neck size between neighbouring primary particles. Application of the model to particles produced under different reactor residence times and temperatures demonstrates that the model can be used to relate reactor conditions to the milling performance of titanium dioxide particles.