Characterisation of cross-linked hydrogel structures for cartilage applications

Alginate is a biocompatible natural hydrogel being explored to create cartilage replacements either on its own or as part of a composite material. Bioprinting technologies based on photopolymerization principles are being used make such structures. In this paper, the effect of functionalization t...

Full description

Saved in:
Bibliographic Details
Main Authors: Mishbak, Hussein, Bártolo, Paulo, Cooper, Glen
Other Authors: School of Mechanical and Aerospace Engineering
Format: Conference or Workshop Item
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/88220
http://hdl.handle.net/10220/45750
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Alginate is a biocompatible natural hydrogel being explored to create cartilage replacements either on its own or as part of a composite material. Bioprinting technologies based on photopolymerization principles are being used make such structures. In this paper, the effect of functionalization time on the mechanical morphology, swelling and degradation characterization of cross-linked alginate hydrogel is investigated. Alginate, chemically-modified with methacrylate groups and different reaction times is considered, by dissolving functionalized alginate with 1.5% photoinitiator solution and crosslinked by ultraviolet (UV) light (8 mW/cm2). Results show that by increasing the functionalization time, it was possible to obtain alginate material with a high level of unsaturation resulting in a less porous structure with high mechanical properties and a reduction of swelling. The influence of increasing the prepolymer concentration, reaction time and the amount of photoinitiator (PI) on mechanical and biomimetic properties of resulting hydrogels led to increased mechanical stiffness when measured at 10% strain. The swelling ratio of Photocrosslinked alginate hydrogels was studied and initial findings link this behavior to functionalization reaction time.