Energy efficiency improvement with k-means approach to thermal comfort for ACMV systems of smart buildings
This paper proposes a novel methodology to predict thermal comfort states of occupants with k-means approach. The approach is embedded into an optimization problem, which is used to locate optimal operating conditions via Augmented Firefly Algorithm (AFA), for improving energy efficiency of building...
محفوظ في:
المؤلفون الرئيسيون: | Zhai, Deqing, Chaudhuri, Tanaya, Soh, Yeng Chai |
---|---|
مؤلفون آخرون: | School of Electrical and Electronic Engineering |
التنسيق: | Conference or Workshop Item |
اللغة: | English |
منشور في: |
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://hdl.handle.net/10356/88310 http://hdl.handle.net/10220/44836 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Random forest based thermal comfort prediction from gender-specific physiological parameters using wearable sensing technology
بواسطة: Zhai, Deqing, وآخرون
منشور في: (2018) -
Thermal comfort prediction using normalized skin temperature in a uniform built environment
بواسطة: Chaudhuri, Tanaya, وآخرون
منشور في: (2018) -
Machine Learning based Prediction of Thermal Comfort in Buildings of Equatorial Singapore
بواسطة: Chaudhuri, Tanaya, وآخرون
منشور في: (2017) -
A feedforward neural network based indoor-climate control framework for thermal comfort and energy saving in buildings
بواسطة: Chaudhuri, Tanaya, وآخرون
منشور في: (2021) -
On assuming Mean Radiant Temperature equal to air temperature during PMV-based thermal comfort study in air-conditioned buildings
بواسطة: Chaudhuri, Tanaya, وآخرون
منشور في: (2017)