基于经验模态分解和神经网络的微网混合储能容量优化配置 = Capacity optimization of hybrid energy storage systems in microgrid using empirical mode decomposition and neural network

提出一种针对独立微网的超级电容/蓄电池混合储能系统(HESS)的容量优化方法。运用经验模态分解技术,将一段记录完全的非平稳风功率分解成为若干固有模态函数(IMF)。在各固有模态函数的瞬时频率-时间曲线的基础上,通过“分频频率”将原始风功率分解成高频与低频2部分,并分别采用HESS中的超级电容和蓄电池来平抑风功率的高频、低频波动分量。平抑后输入负荷侧的功率平滑度可通过平滑度指标量化。采用神经网络模型优化HESS的容量,通过成本和平滑度指标之间的折中实现HESS的容量优化配置。基于某风电场实测数据的仿真实验验证了所提方法的有效性。 A new approach to determine the c...

Full description

Saved in:
Bibliographic Details
Main Authors: 孙承晨 Sun Chengchen, 袁越 Yuan Yue, Choi, San Shing, 李梦婷 Li Mengting, 张新松 Zhang Xinsong, 曹阳 Cao Yang
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:Chinese
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/88366
http://hdl.handle.net/10220/46747
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: Chinese