A modified dolph-chebyshev type ii function matched filter for retinal vessels segmentation
In this paper, we present a new unsupervised algorithm for retinal vessels segmentation. The algorithm utilizes a directionally sensitive matched filter bank using a modified Dolph-Chebyshev type II basis function and a new method to combine the matched filter bank’s responses. Fundus images from th...
Saved in:
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/88375 http://hdl.handle.net/10220/45743 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | In this paper, we present a new unsupervised algorithm for retinal vessels segmentation. The algorithm utilizes a directionally sensitive matched filter bank using a modified Dolph-Chebyshev type II basis function and a new method to combine the matched filter bank’s responses. Fundus images from the DRIVE and STARE databases, as well as high-resolution fundus images from the HRF database, are utilized to validate the proposed algorithm. The results that we achieve on the three databases (DRIVE: Sensitivity = 0.748, F1-score = 0.786, G-score = 0.856, Matthews Correlation Coefficient = 0.758; STARE: Sensitivity = 0.793, F1-score = 0.780, G-score = 0.877, Matthews Correlation Coefficient = 0.756; HRF: Sensitivity = 0.804, F1-score = 0.764, G-score = 0.883, Matthews Correlation Coefficient = 0.741) are higher than many other competing methods. |
---|