Unified composite scenario for inflation and dark matter in the Nambu–Jona-Lasinio model

In this work, we propose a cosmological scenario inherently based on the effective Nambu–Jona-Lasinio (NJL) model that cosmic inflation and dark matter can be successfully described by a single framework. On the one hand, the scalar channel of the NJL model plays a role of the composite inflaton (CI...

Full description

Saved in:
Bibliographic Details
Main Authors: Channuie, Phongpichit, Xiong, Chi
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/88394
http://hdl.handle.net/10220/45721
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this work, we propose a cosmological scenario inherently based on the effective Nambu–Jona-Lasinio (NJL) model that cosmic inflation and dark matter can be successfully described by a single framework. On the one hand, the scalar channel of the NJL model plays a role of the composite inflaton (CI) and we show that it is viable to achieve successful inflation via a nonminimal coupling to gravity. For model of inflation, we compute the inflationary parameters and confront them with recent Planck 2015 data. We discover that the predictions of the model are in excellent agreement with the Planck analysis. We also present in our model a simple connection of physics from the high scales to low scales via renormalization group equations (RGEs) of the physical parameters and use them to estimate the range of relevant parameters. On the other hand, the pseudoscalar channel can be assigned as a candidate for composite dark matter (CD). For a model of dark matter, we couple the pseudoscalar to the Higgs sector of the standard model with the coupling strength κ and estimate its thermally averaged relic abundance. We discover that the CD mass is strongly sensitive to the coupling κ. We find in case of light CD, Ms<Mh/2, that the required relic abundance is archived for value of its mass Ms∼61  GeV for κ = 0.1. However, in this case the CD mass can be lighter when the coupling is getting larger. Moreover, in case of heavy CD, MW,Z (or >Mh), the required relic abundance can be satisfied for value of the CD mass Ms ∼ 410 GeV for κ = 0.5. In contradiction to the light mass case, however, the CD mass in this case can even be heavier when the coupling is getting larger.