Far-field superoscillatory metamaterial superlens

We demonstrate a metamaterial superlens: a planar array of discrete subwavelength metamolecules with individual scattering characteristics tailored to vary spatially to create subdiffraction superoscillatory focus of, in principle, arbitrary shape and size. Metamaterial free-space lenses with previo...

Full description

Saved in:
Bibliographic Details
Main Authors: Yuan, Guanghui, Rogers, Katrine S., Rogers, Edward T. F., Zheludev, Nikolay I.
Other Authors: School of Physical and Mathematical Sciences
Format: Article
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/88506
http://hdl.handle.net/10220/49311
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We demonstrate a metamaterial superlens: a planar array of discrete subwavelength metamolecules with individual scattering characteristics tailored to vary spatially to create subdiffraction superoscillatory focus of, in principle, arbitrary shape and size. Metamaterial free-space lenses with previously unattainable effective numerical apertures – as high as 1.52 – and foci as small as 0.33λ in size are demonstrated. Super-resolution imaging with such lenses is experimentally verified breaking the conventional diffraction limit of resolution and exhibiting resolution close to the size of the focus. Our approach will enable far-field label-free super-resolution nonalgorithmic microscopies at harmless levels of intensity, including imaging inside cells, nanostructures, and silicon chips, without impregnating them with fluorescent materials.