Topology optimization of metallic locking compression plates produced using electron beam melting

Bone fixation plates currently used to treat traumatic fractured bones and to promote fracture healing are built with metallic materials such as stainless steel, cobalt and titanium and its alloys (e.g. CoCrMo and Ti6Al4V). However, due to significant differences between the mechanical properties...

Full description

Saved in:
Bibliographic Details
Main Authors: Al-Tamimi, Abdulsalam Abdulaziz, Peach, Chris, Bartolo, Paulo
Other Authors: School of Mechanical and Aerospace Engineering
Format: Conference or Workshop Item
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/88567
http://hdl.handle.net/10220/45863
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Bone fixation plates currently used to treat traumatic fractured bones and to promote fracture healing are built with metallic materials such as stainless steel, cobalt and titanium and its alloys (e.g. CoCrMo and Ti6Al4V). However, due to significant differences between the mechanical properties of these plates and native bone, stress shielding problems causing bone loss lead to deficient orthopedic treatment. This paper describes the use of Topology Optimization and Electron Beam Melting to redesign and fabricate novel plates based on a commercial standard one, minimizing the stress shielding phenomenon, by considering a compliance minimization approach, different mechanical loading conditions (tension and torsion) and volume reduction (25-75%). The optimized plates, present reduced stiffness due to the optimal distribution of material, maintaining their structural integrity. The optimized plates fabricated using additive manufacturing showed adequate shapes and proved the possibility of fabricating designs developed using topology optimization.