Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks

This study numerically investigates the influence of material heterogeneity on the strength and deformation behavior and the associated microcracking process of a felsic crystalline rock using a grain‐based modeling approach in two‐dimensional Particle Flow Code. By using a heterogeneity index defin...

Full description

Saved in:
Bibliographic Details
Main Authors: Peng, Jun, Wong, Louis Ngai Yuen, Teh, Cee Ing
Other Authors: School of Civil and Environmental Engineering
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/88626
http://hdl.handle.net/10220/44679
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-88626
record_format dspace
spelling sg-ntu-dr.10356-886262020-03-07T11:43:38Z Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks Peng, Jun Wong, Louis Ngai Yuen Teh, Cee Ing School of Civil and Environmental Engineering Grain Boundary Microcrack Heterogeneity This study numerically investigates the influence of material heterogeneity on the strength and deformation behavior and the associated microcracking process of a felsic crystalline rock using a grain‐based modeling approach in two‐dimensional Particle Flow Code. By using a heterogeneity index defined in this study, the heterogeneity induced by variation of grain size distribution can be explicitly incorporated into the numerical specimen models quantitatively. Under compressive loading, the peak strength and the elastic modulus are found to increase as the numerical model gradually changes from heterogeneous to homogeneous, i.e., a decrease of heterogeneity index. Meanwhile, the number of grain boundary tensile cracks gradually decreases and the number of intragrain cracks increases at the moment of failure. However, the total number of generated microcracks seems not to be significantly influenced by heterogeneity. The orientation of grain boundary microcracks is mainly controlled by the geometry of assembled grain structure of the numerical specimen model, while the orientation of intragrain microcracks is to a large degree influenced by the confinement. In addition, the development of intragrain cracks (both tensile and shear) is much more favored in quartz than in other minerals. Under direct tensile loading, heterogeneity is found to have no significant influence on the simulated stress‐strain responses and rock strength. Only grain boundary tensile cracks are generated when the numerical models are loaded in direct tension, and the position of generated macroscopic fracture developed upon failure of the specimen is largely affected by heterogeneity. Published version 2018-04-12T08:11:15Z 2019-12-06T17:07:34Z 2018-04-12T08:11:15Z 2019-12-06T17:07:34Z 2017 Journal Article Peng, J., Wong, L. N. Y., & Teh, C. I. (2017). Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks. Journal of Geophysical Research: Solid Earth, 122(2), 1054-1073. 2169-9313 https://hdl.handle.net/10356/88626 http://hdl.handle.net/10220/44679 10.1002/2016JB013469 en Journal of Geophysical Research: Solid Earth © 2017 American Geophysical Union (AGU). This paper was published in Journal of Geophysical Research : Solid Earth and is made available as an electronic reprint (preprint) with permission of American Geophysical Union (AGU). The published version is available at: [http://dx.doi.org/10.1002/2016JB013469]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. 20 p. application/pdf
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic Grain Boundary Microcrack
Heterogeneity
spellingShingle Grain Boundary Microcrack
Heterogeneity
Peng, Jun
Wong, Louis Ngai Yuen
Teh, Cee Ing
Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks
description This study numerically investigates the influence of material heterogeneity on the strength and deformation behavior and the associated microcracking process of a felsic crystalline rock using a grain‐based modeling approach in two‐dimensional Particle Flow Code. By using a heterogeneity index defined in this study, the heterogeneity induced by variation of grain size distribution can be explicitly incorporated into the numerical specimen models quantitatively. Under compressive loading, the peak strength and the elastic modulus are found to increase as the numerical model gradually changes from heterogeneous to homogeneous, i.e., a decrease of heterogeneity index. Meanwhile, the number of grain boundary tensile cracks gradually decreases and the number of intragrain cracks increases at the moment of failure. However, the total number of generated microcracks seems not to be significantly influenced by heterogeneity. The orientation of grain boundary microcracks is mainly controlled by the geometry of assembled grain structure of the numerical specimen model, while the orientation of intragrain microcracks is to a large degree influenced by the confinement. In addition, the development of intragrain cracks (both tensile and shear) is much more favored in quartz than in other minerals. Under direct tensile loading, heterogeneity is found to have no significant influence on the simulated stress‐strain responses and rock strength. Only grain boundary tensile cracks are generated when the numerical models are loaded in direct tension, and the position of generated macroscopic fracture developed upon failure of the specimen is largely affected by heterogeneity.
author2 School of Civil and Environmental Engineering
author_facet School of Civil and Environmental Engineering
Peng, Jun
Wong, Louis Ngai Yuen
Teh, Cee Ing
format Article
author Peng, Jun
Wong, Louis Ngai Yuen
Teh, Cee Ing
author_sort Peng, Jun
title Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks
title_short Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks
title_full Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks
title_fullStr Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks
title_full_unstemmed Influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks
title_sort influence of grain size heterogeneity on strength and microcracking behavior of crystalline rocks
publishDate 2018
url https://hdl.handle.net/10356/88626
http://hdl.handle.net/10220/44679
_version_ 1681034675578994688