Enhanced polymer rapid tooling for metal injection moulding process

Presently, mold material for metal injection molding (MIM) process is metal and are made through machining. However, machining could be time consuming, costly and skill intensive process to accurately process the mold. Moreover, for the demands when MIM part requirements are in low volume and fea...

Full description

Saved in:
Bibliographic Details
Main Authors: Altaf, Khurram, Abdul Rani, Ahmad Majdi, Ahmad, Faiz, Ahmad, Junaid
Other Authors: School of Mechanical and Aerospace Engineering
Format: Conference or Workshop Item
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/88700
http://hdl.handle.net/10220/45911
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Presently, mold material for metal injection molding (MIM) process is metal and are made through machining. However, machining could be time consuming, costly and skill intensive process to accurately process the mold. Moreover, for the demands when MIM part requirements are in low volume and features are customized, the machined mold is rendered useless once the part demands have been met. 3D printing could be a quick process to make molds from polymers for the customized and low volume MIM cycles. While this 3D printed mold may not be sustainable for mass production, yet they could potentially be viable for small MIM cycles like prototype manufacturing. The present study investigates the performance of polymer molds made form fused deposition modeling (FDM) process for their potential use as direct Rapid Tooling (RT) in MIM process. It was concluded that 3D printed polymer molds could be successfully applied in MIM process for prototype manufacturing and low volume demands of end-use parts.