Tuning the dispersion of effective surface plasmon polaritons with multilayer systems
Recently, effective surface plasmon polaritons (ESPPs) induced by structural dispersion in bounded waveguides were theoretically demonstrated and experimentally verified. Despite the theoretical and experimental efforts, whether ESPPs can mimic real SPPs in every aspect still remains an open questio...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/88809 http://hdl.handle.net/10220/47626 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Recently, effective surface plasmon polaritons (ESPPs) induced by structural dispersion in bounded waveguides were theoretically demonstrated and experimentally verified. Despite the theoretical and experimental efforts, whether ESPPs can mimic real SPPs in every aspect still remains an open question. In this work, we go one step further to study the hybridization of ESPPs in multilayer systems. We consider transverse electric (TE) modes in a conventional rectangular waveguide and a parallel-plate waveguide (PPW) and derive analytically the dispersion relations and asymptotic frequencies of the corresponding ESPPs modes in sandwiched structures consisting of alternating dielectrics of different permittivities. Our results show that the ESPPs can be categorized into odd and even parities (owing to the ‘plasmon’ hybridization) in a similar way as natural SPPs supported by the insulator/metal/insulator (IMI) and metal/insulator/metal (MIM) heterostructures in the optical regime. The similarities and differences between ESSPs and their optical counterparts are also discussed in details, which may provide valuable guidance for future application of ESPPs at the microwave and terahertz frequencies. |
---|