Experience of LoRa low power wide area network

Long Range is an Low Power Wide Area Network technology designed for the Internet of Things. It has gained significant momentum amongst both industrial and research communities in recent years. Patented by Semtech, Long Range makes use of chirp spread spectrum modulation to deliver data with promise...

全面介紹

Saved in:
書目詳細資料
主要作者: Liando, Jansen Christian
其他作者: -
格式: Thesis-Master by Research
語言:English
出版: Nanyang Technological University 2019
主題:
在線閱讀:https://hdl.handle.net/10356/88823
http://hdl.handle.net/10220/47662
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
id sg-ntu-dr.10356-88823
record_format dspace
spelling sg-ntu-dr.10356-888232021-06-24T04:57:09Z Experience of LoRa low power wide area network Liando, Jansen Christian - School of Computer Science and Engineering Li Mo limo@ntu.edu.sg DRNTU::Engineering::Computer science and engineering::Computer systems organization::Performance of systems Long Range is an Low Power Wide Area Network technology designed for the Internet of Things. It has gained significant momentum amongst both industrial and research communities in recent years. Patented by Semtech, Long Range makes use of chirp spread spectrum modulation to deliver data with promises of long battery life, far-reaching communication distances, and a high node density at the cost of data rate. A series of experiments were conducted to verify the claims made by Semtech on Lora technology. Results show that Long Range is capable of communicating over 10km under line-of-sight environments. However, under non-line-of-sight environments, Long Range's performance is severely affected by obstructions such as buildings and vegetations. Moreover, the promise of prolonged battery life requires extreme tuning of parameters. Lastly, a Long Range gateway supports up to 6,000 nodes with Packet Reception Rate requirement of >70%. This dissertation also explores the relationship between Long Range transmission parameters and proposes an algorithm to determine optimal settings in terms of coverage and power consumption under non-line-of-sight environments. It further investigates the impact of Long Range Wide Area Network on energy consumption and network capacity along with implementation of a Long Range medium access mechanism and possible gains brought forth by implementing such a mechanism. Master of Engineering 2019-02-14T03:00:57Z 2019-12-06T17:11:37Z 2019-02-14T03:00:57Z 2019-12-06T17:11:37Z 2019 Thesis-Master by Research Liando, J. C. (2019). Experience of LoRa low power wide area network. Master's thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/88823 https://hdl.handle.net/10356/88823 http://hdl.handle.net/10220/47662 10.32657/10220/47662 en This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0). 50 p. application/pdf Nanyang Technological University
institution Nanyang Technological University
building NTU Library
continent Asia
country Singapore
Singapore
content_provider NTU Library
collection DR-NTU
language English
topic DRNTU::Engineering::Computer science and engineering::Computer systems organization::Performance of systems
spellingShingle DRNTU::Engineering::Computer science and engineering::Computer systems organization::Performance of systems
Liando, Jansen Christian
Experience of LoRa low power wide area network
description Long Range is an Low Power Wide Area Network technology designed for the Internet of Things. It has gained significant momentum amongst both industrial and research communities in recent years. Patented by Semtech, Long Range makes use of chirp spread spectrum modulation to deliver data with promises of long battery life, far-reaching communication distances, and a high node density at the cost of data rate. A series of experiments were conducted to verify the claims made by Semtech on Lora technology. Results show that Long Range is capable of communicating over 10km under line-of-sight environments. However, under non-line-of-sight environments, Long Range's performance is severely affected by obstructions such as buildings and vegetations. Moreover, the promise of prolonged battery life requires extreme tuning of parameters. Lastly, a Long Range gateway supports up to 6,000 nodes with Packet Reception Rate requirement of >70%. This dissertation also explores the relationship between Long Range transmission parameters and proposes an algorithm to determine optimal settings in terms of coverage and power consumption under non-line-of-sight environments. It further investigates the impact of Long Range Wide Area Network on energy consumption and network capacity along with implementation of a Long Range medium access mechanism and possible gains brought forth by implementing such a mechanism.
author2 -
author_facet -
Liando, Jansen Christian
format Thesis-Master by Research
author Liando, Jansen Christian
author_sort Liando, Jansen Christian
title Experience of LoRa low power wide area network
title_short Experience of LoRa low power wide area network
title_full Experience of LoRa low power wide area network
title_fullStr Experience of LoRa low power wide area network
title_full_unstemmed Experience of LoRa low power wide area network
title_sort experience of lora low power wide area network
publisher Nanyang Technological University
publishDate 2019
url https://hdl.handle.net/10356/88823
http://hdl.handle.net/10220/47662
_version_ 1703971178259939328