Vanadium dioxide for energy conservation and energy storage applications : synthesis and performance improvement
Vanadium dioxide (VO2) is one of the most widely studied inorganic phase change material for energy storage and energy conservation applications. Monoclinic VO2 [VO2(M)] changes from semiconducting phase to metallic rutile phase at near room temperature and the resultant abrupt suppressed infrared t...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/88926 http://hdl.handle.net/10220/47246 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-88926 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-889262023-07-14T15:50:22Z Vanadium dioxide for energy conservation and energy storage applications : synthesis and performance improvement Wang, Shancheng Owusu, Kwadwo Asare Mai, Liqiang Ke, Yujie Zhou, Yang Hu, Peng Magdassi, Shlomo Long, Yi School of Materials Science & Engineering Chemical Vapor Deposition DRNTU::Engineering::Materials Vanadium Dioxide Vanadium dioxide (VO2) is one of the most widely studied inorganic phase change material for energy storage and energy conservation applications. Monoclinic VO2 [VO2(M)] changes from semiconducting phase to metallic rutile phase at near room temperature and the resultant abrupt suppressed infrared transmittance at high temperature makes it a potential candidate for thermochromic smart window application to cut the air-condition usage. Meanwhile proper electrical potential, stable structure and good interaction with lithium ions make metastable VO2 [VO2(B)] an attractive material for fabrication of electrodes for batteries and supercapacitors. However, some long-standing issues have plagued its usage. In thermochromic application, high transition temperature (τc), low luminous transmittance (Tlum) and undesirable solar modulation ability (△Tsol) are the key problems, while in energy storage applications, short cycling lifetime and complex three-dimension microstructure are the major challenges. The common methods to produce VO2 polymorph are physical vapour deposition (PVD), chemical vapour deposition (CVD), sol-gel synthesis, and hydrothermal method. CVD is an intensively studied method due to its ability to produce uniform films with precise stoichiometry, phase and morphology control. This paper reviews the various CVD techniques to produce VO2 with controlled phases and the ternary diagram shows the relationship between film stoichiometry and various process conditions. The difference between the various CVD systems are commented and the process window to produce VO2 are tabulated. Some strategies to improve VO2′s performance in both energy conservation and energy storage applications are discussed. NRF (Natl Research Foundation, S’pore) MOE (Min. of Education, S’pore) Accepted version 2018-12-27T06:14:50Z 2019-12-06T17:13:52Z 2018-12-27T06:14:50Z 2019-12-06T17:13:52Z 2018 Journal Article Wang, S., Owusu, K. A., Mai, L., Ke, Y., Zhou, Y., Hu, P., ... Long, Y. (2018). Vanadium dioxide for energy conservation and energy storage applications : synthesis and performance improvement. Applied Energy, 211200-217. doi:10.1016/j.apenergy.2017.11.039 0306-2619 https://hdl.handle.net/10356/88926 http://hdl.handle.net/10220/47246 10.1016/j.apenergy.2017.11.039 en Applied Energy © 2017 Elsevier. This is the author created version of a work that has been peer reviewed and accepted for publication by Applied Energy, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1016/j.apenergy.2017.11.039]. 53 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
Chemical Vapor Deposition DRNTU::Engineering::Materials Vanadium Dioxide |
spellingShingle |
Chemical Vapor Deposition DRNTU::Engineering::Materials Vanadium Dioxide Wang, Shancheng Owusu, Kwadwo Asare Mai, Liqiang Ke, Yujie Zhou, Yang Hu, Peng Magdassi, Shlomo Long, Yi Vanadium dioxide for energy conservation and energy storage applications : synthesis and performance improvement |
description |
Vanadium dioxide (VO2) is one of the most widely studied inorganic phase change material for energy storage and energy conservation applications. Monoclinic VO2 [VO2(M)] changes from semiconducting phase to metallic rutile phase at near room temperature and the resultant abrupt suppressed infrared transmittance at high temperature makes it a potential candidate for thermochromic smart window application to cut the air-condition usage. Meanwhile proper electrical potential, stable structure and good interaction with lithium ions make metastable VO2 [VO2(B)] an attractive material for fabrication of electrodes for batteries and supercapacitors. However, some long-standing issues have plagued its usage. In thermochromic application, high transition temperature (τc), low luminous transmittance (Tlum) and undesirable solar modulation ability (△Tsol) are the key problems, while in energy storage applications, short cycling lifetime and complex three-dimension microstructure are the major challenges. The common methods to produce VO2 polymorph are physical vapour deposition (PVD), chemical vapour deposition (CVD), sol-gel synthesis, and hydrothermal method. CVD is an intensively studied method due to its ability to produce uniform films with precise stoichiometry, phase and morphology control. This paper reviews the various CVD techniques to produce VO2 with controlled phases and the ternary diagram shows the relationship between film stoichiometry and various process conditions. The difference between the various CVD systems are commented and the process window to produce VO2 are tabulated. Some strategies to improve VO2′s performance in both energy conservation and energy storage applications are discussed. |
author2 |
School of Materials Science & Engineering |
author_facet |
School of Materials Science & Engineering Wang, Shancheng Owusu, Kwadwo Asare Mai, Liqiang Ke, Yujie Zhou, Yang Hu, Peng Magdassi, Shlomo Long, Yi |
format |
Article |
author |
Wang, Shancheng Owusu, Kwadwo Asare Mai, Liqiang Ke, Yujie Zhou, Yang Hu, Peng Magdassi, Shlomo Long, Yi |
author_sort |
Wang, Shancheng |
title |
Vanadium dioxide for energy conservation and energy storage applications : synthesis and performance improvement |
title_short |
Vanadium dioxide for energy conservation and energy storage applications : synthesis and performance improvement |
title_full |
Vanadium dioxide for energy conservation and energy storage applications : synthesis and performance improvement |
title_fullStr |
Vanadium dioxide for energy conservation and energy storage applications : synthesis and performance improvement |
title_full_unstemmed |
Vanadium dioxide for energy conservation and energy storage applications : synthesis and performance improvement |
title_sort |
vanadium dioxide for energy conservation and energy storage applications : synthesis and performance improvement |
publishDate |
2018 |
url |
https://hdl.handle.net/10356/88926 http://hdl.handle.net/10220/47246 |
_version_ |
1772828388106436608 |