Contrast-enhanced photoacoustic imaging in the second near-infrared window using semiconducting polymer nanoparticles
Photoacoustic imaging (PAI) is a fast growing deep-tissue imaging modality. However, light scattering and absorption in biological tissues limit imaging depth. Short near-infrared wavelengths (650 to 950 nm) are widely used for PAI. Using longer near-infrared wavelengths reduces scattering. We demon...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/88983 http://hdl.handle.net/10220/46055 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Photoacoustic imaging (PAI) is a fast growing deep-tissue imaging modality. However, light scattering and absorption in biological tissues limit imaging depth. Short near-infrared wavelengths (650 to 950 nm) are widely used for PAI. Using longer near-infrared wavelengths reduces scattering. We demonstrate deep-tissue contrast-enhanced in vivo photoacoustic imaging at a wavelength of 1064 nm. An ultranarrow bandgap semiconducting polymer poly (thienoisoindigo-alt-diketopyrrolopyrrole) (denoted as PIGD) is designed and demonstrated for imaging at 1064 nm. By embedding colloidal nanoparticles (NPs) of PIGD in chicken-breast tissue, an imaging depth of ∼5 cm is achieved. Intravenous injection of PIGD NPs in living rats showed brain vascular images with ∼2 times higher contrast compared with the brain vascular images without any contrast agent. Thus, PIGD NPs as an NIR-II contrast agent opens new opportunities for both preclinical and clinical imaging of deep tissues with enhanced contrast. |
---|