Carbon-based nanomaterial hybrids energy storage applications

Supercapacitors are emerging as highly promising electrochemical energy storage devices, which can be sources of clean and sustainable energy. Off late, a lot of studies are ongoing in the field of carbon-based hydrogels for use in electrodes for supercapacitors. A lot of hybrid materials employing...

Full description

Saved in:
Bibliographic Details
Main Author: Jayakumar, Anjali
Other Authors: Lee Jong Min
Format: Theses and Dissertations
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/89090
http://hdl.handle.net/10220/47651
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
id sg-ntu-dr.10356-89090
record_format dspace
spelling sg-ntu-dr.10356-890902020-06-23T12:29:31Z Carbon-based nanomaterial hybrids energy storage applications Jayakumar, Anjali Lee Jong Min School of Chemical and Biomedical Engineering DRNTU::Engineering::Bioengineering Supercapacitors are emerging as highly promising electrochemical energy storage devices, which can be sources of clean and sustainable energy. Off late, a lot of studies are ongoing in the field of carbon-based hydrogels for use in electrodes for supercapacitors. A lot of hybrid materials employing carbon frameworks and pseudo-capacitive materials are finding a lot of importance in the current scientific environment, as they synergistically improve the electrochemical performance of the supercapacitor electrode. It is also highly imperative to carefully choose the components of the hybrid, since the final properties and performance of the material will highly depend on the individual properties of the components. In the light of these important parameters, my study focuses on the synthesis of hybrid materials with carbon-based materials for a base. In the initial phase of my work, soft materials like three-dimensional graphene hydrogel hybrid systems were used. Polyaniline and manganese oxides nanoparticles were embedded in a graphene hydrogel matrix and their performance was studied for supercapacitor applications. Zeolite imidazole framework-derived (ZIF-67) nickel cobalt mixed oxides were then embedded in graphene hydrogels and were found to perform better than the Manganese oxide/polyaniline/graphene hydrogel. A biomass-derived carbon/Ni Co metal nanoparticle system was designed to mimic this graphene/Ni Co mixed oxide system, with a new and non-conventional use of a coconut tree fibre, coconut leaf sheath; a cheap substitute for graphene. My study shows the possibility of using a well-studied, optimised and functionalised biomass-derived carbon as a cheap substitute for graphene and the detailed comparison studies have shown that the energy-power density matrix for a biomass derived carbon framework embedded with ZIF-derived Ni-Co nanoparticles is comparable with a graphene/ZIF-derived Ni Co mixed oxide system. This highlights the untapped potential in our abundantly available renewable resources like biomass. Doctor of Philosophy 2019-02-13T01:50:24Z 2019-12-06T17:17:39Z 2019-02-13T01:50:24Z 2019-12-06T17:17:39Z 2018 Thesis Jayakumar, A. (2018). Carbon-based nanomaterial hybrids energy storage applications. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/89090 http://hdl.handle.net/10220/47651 10.32657/10220/47651 en 213 p. application/pdf
institution Nanyang Technological University
building NTU Library
country Singapore
collection DR-NTU
language English
topic DRNTU::Engineering::Bioengineering
spellingShingle DRNTU::Engineering::Bioengineering
Jayakumar, Anjali
Carbon-based nanomaterial hybrids energy storage applications
description Supercapacitors are emerging as highly promising electrochemical energy storage devices, which can be sources of clean and sustainable energy. Off late, a lot of studies are ongoing in the field of carbon-based hydrogels for use in electrodes for supercapacitors. A lot of hybrid materials employing carbon frameworks and pseudo-capacitive materials are finding a lot of importance in the current scientific environment, as they synergistically improve the electrochemical performance of the supercapacitor electrode. It is also highly imperative to carefully choose the components of the hybrid, since the final properties and performance of the material will highly depend on the individual properties of the components. In the light of these important parameters, my study focuses on the synthesis of hybrid materials with carbon-based materials for a base. In the initial phase of my work, soft materials like three-dimensional graphene hydrogel hybrid systems were used. Polyaniline and manganese oxides nanoparticles were embedded in a graphene hydrogel matrix and their performance was studied for supercapacitor applications. Zeolite imidazole framework-derived (ZIF-67) nickel cobalt mixed oxides were then embedded in graphene hydrogels and were found to perform better than the Manganese oxide/polyaniline/graphene hydrogel. A biomass-derived carbon/Ni Co metal nanoparticle system was designed to mimic this graphene/Ni Co mixed oxide system, with a new and non-conventional use of a coconut tree fibre, coconut leaf sheath; a cheap substitute for graphene. My study shows the possibility of using a well-studied, optimised and functionalised biomass-derived carbon as a cheap substitute for graphene and the detailed comparison studies have shown that the energy-power density matrix for a biomass derived carbon framework embedded with ZIF-derived Ni-Co nanoparticles is comparable with a graphene/ZIF-derived Ni Co mixed oxide system. This highlights the untapped potential in our abundantly available renewable resources like biomass.
author2 Lee Jong Min
author_facet Lee Jong Min
Jayakumar, Anjali
format Theses and Dissertations
author Jayakumar, Anjali
author_sort Jayakumar, Anjali
title Carbon-based nanomaterial hybrids energy storage applications
title_short Carbon-based nanomaterial hybrids energy storage applications
title_full Carbon-based nanomaterial hybrids energy storage applications
title_fullStr Carbon-based nanomaterial hybrids energy storage applications
title_full_unstemmed Carbon-based nanomaterial hybrids energy storage applications
title_sort carbon-based nanomaterial hybrids energy storage applications
publishDate 2019
url https://hdl.handle.net/10356/89090
http://hdl.handle.net/10220/47651
_version_ 1681058306911633408