Deep-subwavelength control of acoustic waves in an ultra-compact metasurface lens
Space-coiling acoustic metasurfaces have been largely exploited and shown their outstanding wave manipulation capacity. However, they are complex in realization and cannot directly manipulate acoustic near-fields by controlling the effective path length. Here, we propose a comprehensive paradigm for...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/89115 http://hdl.handle.net/10220/47666 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | Space-coiling acoustic metasurfaces have been largely exploited and shown their outstanding wave manipulation capacity. However, they are complex in realization and cannot directly manipulate acoustic near-fields by controlling the effective path length. Here, we propose a comprehensive paradigm for acoustic metasurfaces to extend the wave manipulations to both far- and near-fields and markedly reduce the implementation complexity with a simple structure, which consists of an array of deep-subwavelength-spaced slits perforated in a thin plate. A semi-analytical approach for such a design is established using a microscopic coupled-wave model, which reveals that the acoustic diffractive pattern at every slit exit is the sum of the initial transmission and the secondary scatterings of the coupled fields from other slits. For proof-of-concept, we examine two metasurface lenses for sound focusing within and beyond the diffraction limit. This work provides a feasible strategy for creating ultra-compact acoustic components with versatile potentials. |
---|