Lossless dimension expanders via linearized polynomials and subspace designs

For a vector space F^n over a field F, an (eta,beta)-dimension expander of degree d is a collection of d linear maps Gamma_j : F^n -> F^n such that for every subspace U of F^n of dimension at most eta n, the image of U under all the maps, sum_{j=1}^d Gamma_j(U), has dimension at least beta dim(U)...

全面介紹

Saved in:
書目詳細資料
Main Authors: Guruswami, Venkatesan, Resch, Nicolas, Xing, Chaoping
其他作者: School of Physical and Mathematical Sciences
格式: Article
語言:English
出版: 2018
主題:
在線閱讀:https://hdl.handle.net/10356/89333
http://hdl.handle.net/10220/46214
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!

相似書籍