Multi-rate fluid scheduling of mixed-criticality systems on multiprocessors

In this paper we consider the problem of mixed-criticality (MC) scheduling of implicit-deadline sporadic task systems on a homogenous multiprocessor platform. Focusing on dual-criticality systems, algorithms based on the fluid scheduling model have been proposed in the past. These algorithms use a d...

全面介紹

Saved in:
書目詳細資料
Main Authors: Ramanathan, Saravanan, Easwaran, Arvind, Cho, Hyeonjoong
其他作者: School of Computer Science and Engineering
格式: Article
語言:English
出版: 2018
主題:
在線閱讀:https://hdl.handle.net/10356/89361
http://hdl.handle.net/10220/44850
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:In this paper we consider the problem of mixed-criticality (MC) scheduling of implicit-deadline sporadic task systems on a homogenous multiprocessor platform. Focusing on dual-criticality systems, algorithms based on the fluid scheduling model have been proposed in the past. These algorithms use a dual-rate execution model for each high-criticality task depending on the system mode. Once the system switches to the high-criticality mode, the execution rates of such tasks are increased to meet their increased demand. Although these algorithms are speed-up optimal, they are unable to schedule several feasible dual-criticality task systems. This is because a single fixed execution rate for each high-criticality task after the mode switch is not efficient to handle the high variability in demand during the transition period immediately following the mode switch. This demand variability exists as long as the carry-over jobs of high-criticality tasks, that is jobs released before the mode switch, have not completed. Addressing this shortcoming, we propose a multi-rate fluid execution model for dual-criticality task systems in this paper. Under this model, high-criticality tasks are allocated varying execution rates in the transition period after the mode switch to efficiently handle the demand variability. We derive a sufficient schedulability test for the proposed model and show its dominance over the dual-rate fluid execution model. Further, we also present a speed-up optimal rate assignment strategy for the multi-rate model, and experimentally show that the proposed model outperforms all the existing MC scheduling algorithms with known speed-up bounds.