Low-latency compression of mocap data using learned spatial decorrelation transform
Due to the growing needs of motion capture (mocap) in movie, video games, sports, etc., it is highly desired to compress mocap data for efficient storage and transmission. Unfortunately, the existing compression methods have either high latency or poor compression performance, making them less appea...
Saved in:
Main Authors: | Hou, Junhui, Chau, Lap-Pui, Magnenat-Thalmann, Nadia, He, Ying |
---|---|
其他作者: | School of Computer Science and Engineering |
格式: | Article |
語言: | English |
出版: |
2018
|
主題: | |
在線閱讀: | https://hdl.handle.net/10356/89393 http://hdl.handle.net/10220/46234 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Human Motion Capture Data Tailored Transform Coding
由: Hou, Junhui, et al.
出版: (2018) -
Sparse low-rank matrix approximation for data compression
由: Hou, Junhui, et al.
出版: (2018) -
Light field image compression based on bi-level view compensation with rate-distortion optimization
由: Hou, Junhui, et al.
出版: (2020) -
Dynamic 3-D facial compression using low rank and sparse decomposition
由: Chau, Lap-Pui, et al.
出版: (2013) -
Using optical MOCAP to improve the canoeing stroke
由: Lee, Wen Hui.
出版: (2010)