Manifold Differential Evolution (MDE) : A global optimization method for geodesic Centroidal Voronoi Tessellations on meshes

Computing centroidal Voronoi tessellations (CVT) has many applications in computer graphics. The existing methods, such as the Lloyd algorithm and the quasi-Newton solver, are efficient and easy to implement; however, they compute only the local optimal solutions due to the highly non-linear nature...

Full description

Saved in:
Bibliographic Details
Main Authors: Liu, Yong-Jin, Xu, Chun-Xu, Yi, Ran, Fan, Dian, He, Ying
Other Authors: School of Computer Science and Engineering
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/89444
http://hdl.handle.net/10220/46265
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Computing centroidal Voronoi tessellations (CVT) has many applications in computer graphics. The existing methods, such as the Lloyd algorithm and the quasi-Newton solver, are efficient and easy to implement; however, they compute only the local optimal solutions due to the highly non-linear nature of the CVT energy. This paper presents a novel method, called manifold differential evolution (MDE), for computing globally optimal geodesic CVT energy on triangle meshes. Formulating the mutation operator using discrete geodesics, MDE naturally extends the powerful differential evolution framework from Euclidean spaces to manifold domains. Under mild assumptions, we show that MDE has a provable probabilistic convergence to the global optimum. Experiments on a wide range of 3D models show that MDE consistently outperforms the existing methods by producing results with lower energy. Thanks to its intrinsic and global nature, MDE is insensitive to initialization and mesh tessellation. Moreover, it is able to handle multiply-connected Voronoi cells, which are challenging to the existing geodesic CVT methods.