A novel density peak clustering algorithm based on squared residual error
The density peak clustering (DPC) algorithm is designed to quickly identify intricate-shaped clusters with high dimensionality by finding high-density peaks in a non-iterative manner and using only one threshold parameter. However, DPC has certain limitations in processing low-density data points be...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/89594 http://hdl.handle.net/10220/47062 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The density peak clustering (DPC) algorithm is designed to quickly identify intricate-shaped clusters with high dimensionality by finding high-density peaks in a non-iterative manner and using only one threshold parameter. However, DPC has certain limitations in processing low-density data points because it only takes the global data density distribution into account. As such, DPC may confine in forming low-density data clusters, or in other words, DPC may fail in detecting anomalies and borderline points. In this paper, we analyze the limitations of DPC and propose a novel density peak clustering algorithm to better handle low-density clustering tasks. Specifically, our algorithm provides a better decision graph comparing to DPC for the determination of cluster centroids. Experimental results show that our algorithm outperforms DPC and other clustering algorithms on the benchmarking datasets. |
---|