Multifunctional and highly compressive cross-linker-free sponge based on reduced graphene oxide and boron nitride nanosheets

In this work, we report for the first time a simple approach to fabricate 3D reduced graphene oxide/boron nitride (rGO/BN) sponges with no additional chemical cross-linkers. Encouragingly, such sponge possesses higher compressibility and better recoverability in both air and organic solvents as comp...

Full description

Saved in:
Bibliographic Details
Main Authors: Li, Hongling, Jing, Lin, Tay, Roland Yingjie, Tsang, Siu Hon, Lin, Jinjun, Zhu, Minmin, Leong, Fei Ni, Teo, Edwin Hang Tong
Other Authors: School of Electrical and Electronic Engineering
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/89611
http://hdl.handle.net/10220/44995
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:In this work, we report for the first time a simple approach to fabricate 3D reduced graphene oxide/boron nitride (rGO/BN) sponges with no additional chemical cross-linkers. Encouragingly, such sponge possesses higher compressibility and better recoverability in both air and organic solvents as compared to the bare rGO sponge. The as-prepared rGO/BN sponge also exhibits excellent water resistance and high oil absorption capability, achieving up to 170 times its own weight toward a wide range of environmental contaminants. Especially, the absorbed oil can be easily removed by the absorption–squeezing process which is cost effective and environmental friendly for oil collection. Most importantly, the underlying reasons for the remarkable mechanical properties, excellent oil absorption capabilities have been analysed and revealed in depth. These exceptional characteristics together with the ease of scalable synthesis make the as-prepared 3D rGO/BN sponge show many promising applications ranging from tissue engineering, sensors, catalysis, energy storage and conversion to environmental remediation.