Towards intelligent caring agents for Aging-In-Place : issues and challenges
The aging of the world's population presents vast societal and individual challenges. The relatively shrinking workforce to support the growing population of the elderly leads to a rapidly increasing amount of technological innovations in the field of elderly care. In this paper, we present an...
Saved in:
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Conference or Workshop Item |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/89686 http://hdl.handle.net/10220/47038 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The aging of the world's population presents vast societal and individual challenges. The relatively shrinking workforce to support the growing population of the elderly leads to a rapidly increasing amount of technological innovations in the field of elderly care. In this paper, we present an integrated framework consisting of various intelligent agents with their own expertise and responsibilities working in a holistic manner to assist, care, and accompany the elderly around the clock in the home environment. To support the independence of the elderly for Aging-In-Place (AIP), the intelligent agents must well understand the elderly, be fully aware of the home environment, possess high-level reasoning and learning capabilities, and provide appropriate tender care in the physical, cognitive, emotional, and social aspects. The intelligent agents sense in non-intrusive ways from different sources and provide wellness monitoring, recommendations, and services across diverse platforms and locations. They collaborate together and interact with the elderly in a natural and holistic manner to provide all-around tender care reactively and proactively. We present our implementation of the collaboration framework with a number of realized functionalities of the intelligent agents, highlighting its feasibility and importance in addressing various challenges in AIP. |
---|