Probabilistic guided exploration for reinforcement learning in self-organizing neural networks

Exploration is essential in reinforcement learning, which expands the search space of potential solutions to a given problem for performance evaluations. Specifically, carefully designed exploration strategy may help the agent learn faster by taking the advantage of what it has learned previously. H...

Full description

Saved in:
Bibliographic Details
Main Authors: Wang, Peng, Zhou, Weigui Jair, Wang, Di, Tan, Ah-Hwee
Other Authors: School of Computer Science and Engineering
Format: Conference or Workshop Item
Language:English
Published: 2019
Subjects:
Online Access:https://hdl.handle.net/10356/89871
http://hdl.handle.net/10220/49724
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:Exploration is essential in reinforcement learning, which expands the search space of potential solutions to a given problem for performance evaluations. Specifically, carefully designed exploration strategy may help the agent learn faster by taking the advantage of what it has learned previously. However, many reinforcement learning mechanisms still adopt simple exploration strategies, which select actions in a pure random manner among all the feasible actions. In this paper, we propose novel mechanisms to improve the existing knowledge-based exploration strategy based on a probabilistic guided approach to select actions. We conduct extensive experiments in a Minefield navigation simulator and the results show that our proposed probabilistic guided exploration approach significantly improves the convergence rate.