Cobalt complex of a tetraamido macrocyclic ligand as a precursor for electrocatalytic hydrogen evolution
Hydrogen (H2) is a clean fuel that can potentially store renewable energy and overcome some of the environmental problems that arise from fossil-fuel consumption. One attractive approach is to produce H2 from water electrocatalytically using molecular complexes that can be systematically improved th...
Saved in:
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/89904 http://hdl.handle.net/10220/47964 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-89904 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-899042023-02-28T19:36:09Z Cobalt complex of a tetraamido macrocyclic ligand as a precursor for electrocatalytic hydrogen evolution Ho, Xian Liang Das, Siva Prasad Ng, Leonard Kia-Sheun Ng, Andrew Yun Ru Ganguly, Rakesh Soo, Han Sen School of Physical and Mathematical Sciences DRNTU::Science::Chemistry Electrocatalytic Hydrogen Evolution Cobalt Nanoparticles Hydrogen (H2) is a clean fuel that can potentially store renewable energy and overcome some of the environmental problems that arise from fossil-fuel consumption. One attractive approach is to produce H2 from water electrocatalytically using molecular complexes that can be systematically improved through ligand modifications. We report cobalt and nickel complexes supported by tetraamido macrocyclic ligands (TAMLs), which exclusively consist of earth-abundant elements. Although TAML systems are well established in high-valent transition-metal chemistry, little is known about their reactivity in reductive catalysis despite the electron-rich nature of the tetraanionic TAML. Thus we explored the utility of these nucleophilic -ate complexes as potential electrocatalysts for H2 evolution using water as the proton source. Controlled potential electrolysis experiments were performed, and the cobalt TAML variant exhibited catalytic H2 evolution activity in acetonitrile containing 1.0 M water but was inactive in purely aqueous solutions. Further investigation revealed that cobalt metal nanoparticles were electrodeposited as the active catalyst for H2 evolution. We propose that these disparities in reactivity arise from the different number of water molecules coordinated to the cobalt center, with intermediate concentrations favoring a square pyramidal structure with labile ligands, whereas high concentrations of water result in a kinetically inert octahedral complex with no empty coordination sites. ASTAR (Agency for Sci., Tech. and Research, S’pore) MOE (Min. of Education, S’pore) Accepted version 2019-04-02T06:52:02Z 2019-12-06T17:36:16Z 2019-04-02T06:52:02Z 2019-12-06T17:36:16Z 2019 Journal Article Ho, X. L., Das, S. P., Ng, L. K.-S., Ng, A. Y. R., Ganguly, R., & Soo, H. S. (2019). Cobalt complex of a tetraamido macrocyclic ligand as a precursor for electrocatalytic hydrogen evolution. Organometallics, 38(6), 1397-1406. doi:10.1021/acs.organomet.9b00032 0276-7333 https://hdl.handle.net/10356/89904 http://hdl.handle.net/10220/47964 10.1021/acs.organomet.9b00032 en Organometallics © 2019 American Chemical Society (ACS). All rights reserved. This paper was published in Organometallics and is made available with permission of American Chemical Society (ACS). 12 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Science::Chemistry Electrocatalytic Hydrogen Evolution Cobalt Nanoparticles |
spellingShingle |
DRNTU::Science::Chemistry Electrocatalytic Hydrogen Evolution Cobalt Nanoparticles Ho, Xian Liang Das, Siva Prasad Ng, Leonard Kia-Sheun Ng, Andrew Yun Ru Ganguly, Rakesh Soo, Han Sen Cobalt complex of a tetraamido macrocyclic ligand as a precursor for electrocatalytic hydrogen evolution |
description |
Hydrogen (H2) is a clean fuel that can potentially store renewable energy and overcome some of the environmental problems that arise from fossil-fuel consumption. One attractive approach is to produce H2 from water electrocatalytically using molecular complexes that can be systematically improved through ligand modifications. We report cobalt and nickel complexes supported by tetraamido macrocyclic ligands (TAMLs), which exclusively consist of earth-abundant elements. Although TAML systems are well established in high-valent transition-metal chemistry, little is known about their reactivity in reductive catalysis despite the electron-rich nature of the tetraanionic TAML. Thus we explored the utility of these nucleophilic -ate complexes as potential electrocatalysts for H2 evolution using water as the proton source. Controlled potential electrolysis experiments were performed, and the cobalt TAML variant exhibited catalytic H2 evolution activity in acetonitrile containing 1.0 M water but was inactive in purely aqueous solutions. Further investigation revealed that cobalt metal nanoparticles were electrodeposited as the active catalyst for H2 evolution. We propose that these disparities in reactivity arise from the different number of water molecules coordinated to the cobalt center, with intermediate concentrations favoring a square pyramidal structure with labile ligands, whereas high concentrations of water result in a kinetically inert octahedral complex with no empty coordination sites. |
author2 |
School of Physical and Mathematical Sciences |
author_facet |
School of Physical and Mathematical Sciences Ho, Xian Liang Das, Siva Prasad Ng, Leonard Kia-Sheun Ng, Andrew Yun Ru Ganguly, Rakesh Soo, Han Sen |
format |
Article |
author |
Ho, Xian Liang Das, Siva Prasad Ng, Leonard Kia-Sheun Ng, Andrew Yun Ru Ganguly, Rakesh Soo, Han Sen |
author_sort |
Ho, Xian Liang |
title |
Cobalt complex of a tetraamido macrocyclic ligand as a precursor for electrocatalytic hydrogen evolution |
title_short |
Cobalt complex of a tetraamido macrocyclic ligand as a precursor for electrocatalytic hydrogen evolution |
title_full |
Cobalt complex of a tetraamido macrocyclic ligand as a precursor for electrocatalytic hydrogen evolution |
title_fullStr |
Cobalt complex of a tetraamido macrocyclic ligand as a precursor for electrocatalytic hydrogen evolution |
title_full_unstemmed |
Cobalt complex of a tetraamido macrocyclic ligand as a precursor for electrocatalytic hydrogen evolution |
title_sort |
cobalt complex of a tetraamido macrocyclic ligand as a precursor for electrocatalytic hydrogen evolution |
publishDate |
2019 |
url |
https://hdl.handle.net/10356/89904 http://hdl.handle.net/10220/47964 |
_version_ |
1759855533092765696 |