An atomtronic flux qubit : a ring lattice of Bose–Einstein condensates interrupted by three weak links

We study a physical system consisting of a Bose–Einstein condensate confined to a ring shaped lattice potential interrupted by three weak links. The system is assumed to be driven by an effective flux piercing the ring lattice. By employing path integral techniques, we explore the effective quantum...

Full description

Saved in:
Bibliographic Details
Main Authors: Kwek, Leong-Chuan, Aghamalyan, D, Nguyen, N T, Auksztol, F, Gan, K S, Valado, M Martinez, Condylis, P C, Dumke, R, Amico, L
Other Authors: Institute of Advanced Studies
Format: Article
Language:English
Published: 2018
Subjects:
Online Access:https://hdl.handle.net/10356/90021
http://hdl.handle.net/10220/46489
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Nanyang Technological University
Language: English
Description
Summary:We study a physical system consisting of a Bose–Einstein condensate confined to a ring shaped lattice potential interrupted by three weak links. The system is assumed to be driven by an effective flux piercing the ring lattice. By employing path integral techniques, we explore the effective quantum dynamics of the system in a pure quantum phase dynamics regime. Moreover, the effects of the density's quantum fluctuations are studied through exact diagonalization analysis of the spectroscopy of the Bose–Hubbard model. We demonstrate that a clear two-level system emerges by tuning the magnetic flux at degeneracy. The lattice confinement, platform for the condensate, is realized experimentally employing a spatial light modulator.