Aluminum nanostructures with strong visible-range SERS activity for versatile micropatterning of molecular security labels
The application of aluminum (Al)-based nanostructures for visible-range plasmonics, especially for surface-enhanced Raman scattering (SERS), currently suffers from inconsistent local electromagnetic field distributions and/or inhomogeneous distribution of probe molecules. Herein, we lithographically...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/90091 http://hdl.handle.net/10220/48391 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
Summary: | The application of aluminum (Al)-based nanostructures for visible-range plasmonics, especially for surface-enhanced Raman scattering (SERS), currently suffers from inconsistent local electromagnetic field distributions and/or inhomogeneous distribution of probe molecules. Herein, we lithographically fabricate structurally uniform Al nanostructures which enable homogeneous adsorption of various probe molecules. Individual Al nanostructures exhibit strong local electromagnetic field enhancements, in turn leading to intense SERS activity. The average SERS enhancement factor (EF) for individual nanostructures exceeds 104 for non-resonant probe molecules in the visible spectrum. These Al nanostructures also retain more than 70% of their original SERS intensities after one-month storage, displaying superb stability under ambient conditions. We further achieve tunable polarization-dependent SERS responses using anisotropic Al nanostructures, facilitating the design of sophisticated SERS-based security labels. Our micron-sized security label comprises two-tier security features, including a machine-readable hybrid quick-response (QR) code overlaid with a set of ciphertexts. Our work demonstrates the versatility of Al-based structures in low-cost modern chemical nano-analytics and forgery protection. |
---|