Modeling and optimization of ACMV systems for energy efficient smart buildings
Modeling and optimization for energy efficient smart buildings are interesting and promising research areas. According to Paris Protocol signed in 2015, energy efficient, smart and green buildings are imperative concerns. Heating, ventilation and air-conditioning (HVAC) or air conditioning and mecha...
Saved in:
Main Author: | |
---|---|
Other Authors: | |
Format: | Theses and Dissertations |
Language: | English |
Published: |
2019
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/90112 http://hdl.handle.net/10220/48443 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-90112 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-901122023-07-04T16:34:47Z Modeling and optimization of ACMV systems for energy efficient smart buildings Zhai, Deqing Soh Yeng Chai School of Electrical and Electronic Engineering DRNTU::Engineering::Electrical and electronic engineering Modeling and optimization for energy efficient smart buildings are interesting and promising research areas. According to Paris Protocol signed in 2015, energy efficient, smart and green buildings are imperative concerns. Heating, ventilation and air-conditioning (HVAC) or air conditioning and mechanical ventilation (ACMV) systems, consume around 40% of the total energy, and the systems also directly impact on the environmental conditions, especially the indoor environmental conditions, such as air temperature, air humidity, air velocity, air quality, etc. In this thesis, the main objective is to systematically optimize the ACMV systems to operate efficiently and maintain indoor environmental conditions as comfortable and healthy as possible for occupants. The thesis is organized into the following systematic three-phase methodology to enhance ACMV systems' energy efficiency and indoor occupants' thermal comfort in smart buildings. Phase 1: Modeling energy consumption of ACMV systems with machine learning techniques. Phase 2: Modeling thermal comfort sensations of occupants with passive and active approaches. Phase 3: Formulating and solving optimization problems to enhance smart buildings' energy efficiency and maintaining indoor thermal comfort sensations of occupants under different algorithms. Doctor of Philosophy 2019-05-29T03:54:42Z 2019-12-06T17:40:54Z 2019-05-29T03:54:42Z 2019-12-06T17:40:54Z 2019 Thesis Zhai, D. (2019). Modeling and optimization of ACMV systems for energy efficient smart buildings. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/90112 http://hdl.handle.net/10220/48443 10.32657/10220/48443 en 229 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Electrical and electronic engineering |
spellingShingle |
DRNTU::Engineering::Electrical and electronic engineering Zhai, Deqing Modeling and optimization of ACMV systems for energy efficient smart buildings |
description |
Modeling and optimization for energy efficient smart buildings are interesting and promising research areas. According to Paris Protocol signed in 2015, energy efficient, smart and green buildings are imperative concerns. Heating, ventilation and air-conditioning (HVAC) or air conditioning and mechanical ventilation (ACMV) systems, consume around 40% of the total energy, and the systems also directly impact on the environmental conditions, especially the indoor environmental conditions, such as air temperature, air humidity, air velocity, air quality, etc. In this thesis, the main objective is to systematically optimize the ACMV systems to operate efficiently and maintain indoor environmental conditions as comfortable and healthy as possible for occupants. The thesis is organized into the following systematic three-phase methodology to enhance ACMV systems' energy efficiency and indoor occupants' thermal comfort in smart buildings. Phase 1: Modeling energy consumption of ACMV systems with machine learning techniques. Phase 2: Modeling thermal comfort sensations of occupants with passive and
active approaches. Phase 3: Formulating and solving optimization problems to enhance smart buildings' energy efficiency and maintaining indoor thermal comfort sensations of occupants under different algorithms. |
author2 |
Soh Yeng Chai |
author_facet |
Soh Yeng Chai Zhai, Deqing |
format |
Theses and Dissertations |
author |
Zhai, Deqing |
author_sort |
Zhai, Deqing |
title |
Modeling and optimization of ACMV systems for energy efficient smart buildings |
title_short |
Modeling and optimization of ACMV systems for energy efficient smart buildings |
title_full |
Modeling and optimization of ACMV systems for energy efficient smart buildings |
title_fullStr |
Modeling and optimization of ACMV systems for energy efficient smart buildings |
title_full_unstemmed |
Modeling and optimization of ACMV systems for energy efficient smart buildings |
title_sort |
modeling and optimization of acmv systems for energy efficient smart buildings |
publishDate |
2019 |
url |
https://hdl.handle.net/10356/90112 http://hdl.handle.net/10220/48443 |
_version_ |
1772828642285453312 |