Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice
Although organic semiconducting polymer nanoparticles (SPNs) have emerged as an important category of optical imaging agents, their application in molecular imaging is still in its infancy and faces many challenges. We herein report a straightforward one-pot synthetic approach to construct multilaye...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2018
|
Subjects: | |
Online Access: | https://hdl.handle.net/10356/90177 http://hdl.handle.net/10220/47204 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Nanyang Technological University |
Language: | English |
id |
sg-ntu-dr.10356-90177 |
---|---|
record_format |
dspace |
spelling |
sg-ntu-dr.10356-901772023-12-29T06:53:01Z Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice Zhu, Houjuan Fang, Yuan Zhen, Xu Wei, Na Gao, Yu Luo, Kathy Qian Xu, Chenjie Duan, Hongwei Ding, Dan Chen, Peng Pu, Kanyi School of Chemical and Biomedical Engineering NTU-Northwestern Institute for Nanomedicine DRNTU::Engineering::Chemical engineering Enhanced Fluorescence Semiconducting Polymer Nanoparticles Although organic semiconducting polymer nanoparticles (SPNs) have emerged as an important category of optical imaging agents, their application in molecular imaging is still in its infancy and faces many challenges. We herein report a straightforward one-pot synthetic approach to construct multilayered near-infrared (NIR) fluorescent SPNs with enhanced fluorescence and optimized biodistribution for in vivo molecular imaging. In addition to the SP core, the multilayered SPNs have a middle silica protection layer and an outer poly(ethylene glycol) (PEG) corona, which play crucial roles in enhancing the NIR fluorescence by up to ∼100 fold and reducing nonspecific interactions, respectively. Their proof-of-concept imaging applications are demonstrated in cells, zebrafish and living mice. The multilayered nanoarchitecture not only permits in vivo lymph node tracking with an ultrahigh signal-to-noise ratio (∼85), but also allows for more sensitive in vivo imaging of tumors with a fluorescence intensity ratio of tumor to liver that is ∼8-fold higher compared to that of the counterpart silica SPN. Thus, this study provides a simple yet effective nanoengineering approach to facilitate the application of SPNs in molecular imaging. MOE (Min. of Education, S’pore) Published version 2018-12-26T07:59:39Z 2019-12-06T17:42:27Z 2018-12-26T07:59:39Z 2019-12-06T17:42:27Z 2016 Journal Article Zhu, H., Fang, Y., Zhen, X., Wei, N., Gao, Y., Luo, K. Q., . . . Pu, K. (2016). Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice. Chemical Science, 7(8), 5118-5125. doi:10.1039/C6SC01251E 2041-6520 https://hdl.handle.net/10356/90177 http://hdl.handle.net/10220/47204 10.1039/C6SC01251E en Chemical Science © 2016 The Author(s) (published by Royal Society of Chemistry). This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. 8 p. application/pdf |
institution |
Nanyang Technological University |
building |
NTU Library |
continent |
Asia |
country |
Singapore Singapore |
content_provider |
NTU Library |
collection |
DR-NTU |
language |
English |
topic |
DRNTU::Engineering::Chemical engineering Enhanced Fluorescence Semiconducting Polymer Nanoparticles |
spellingShingle |
DRNTU::Engineering::Chemical engineering Enhanced Fluorescence Semiconducting Polymer Nanoparticles Zhu, Houjuan Fang, Yuan Zhen, Xu Wei, Na Gao, Yu Luo, Kathy Qian Xu, Chenjie Duan, Hongwei Ding, Dan Chen, Peng Pu, Kanyi Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice |
description |
Although organic semiconducting polymer nanoparticles (SPNs) have emerged as an important category of optical imaging agents, their application in molecular imaging is still in its infancy and faces many challenges. We herein report a straightforward one-pot synthetic approach to construct multilayered near-infrared (NIR) fluorescent SPNs with enhanced fluorescence and optimized biodistribution for in vivo molecular imaging. In addition to the SP core, the multilayered SPNs have a middle silica protection layer and an outer poly(ethylene glycol) (PEG) corona, which play crucial roles in enhancing the NIR fluorescence by up to ∼100 fold and reducing nonspecific interactions, respectively. Their proof-of-concept imaging applications are demonstrated in cells, zebrafish and living mice. The multilayered nanoarchitecture not only permits in vivo lymph node tracking with an ultrahigh signal-to-noise ratio (∼85), but also allows for more sensitive in vivo imaging of tumors with a fluorescence intensity ratio of tumor to liver that is ∼8-fold higher compared to that of the counterpart silica SPN. Thus, this study provides a simple yet effective nanoengineering approach to facilitate the application of SPNs in molecular imaging. |
author2 |
School of Chemical and Biomedical Engineering |
author_facet |
School of Chemical and Biomedical Engineering Zhu, Houjuan Fang, Yuan Zhen, Xu Wei, Na Gao, Yu Luo, Kathy Qian Xu, Chenjie Duan, Hongwei Ding, Dan Chen, Peng Pu, Kanyi |
format |
Article |
author |
Zhu, Houjuan Fang, Yuan Zhen, Xu Wei, Na Gao, Yu Luo, Kathy Qian Xu, Chenjie Duan, Hongwei Ding, Dan Chen, Peng Pu, Kanyi |
author_sort |
Zhu, Houjuan |
title |
Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice |
title_short |
Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice |
title_full |
Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice |
title_fullStr |
Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice |
title_full_unstemmed |
Multilayered semiconducting polymer nanoparticles with enhanced NIR fluorescence for molecular imaging in cells, zebrafish and mice |
title_sort |
multilayered semiconducting polymer nanoparticles with enhanced nir fluorescence for molecular imaging in cells, zebrafish and mice |
publishDate |
2018 |
url |
https://hdl.handle.net/10356/90177 http://hdl.handle.net/10220/47204 |
_version_ |
1787136774892421120 |