3D human motion recovery from a single video using dense spatio-temporal features with exemplar-based approach

This study focuses on 3D human motion recovery from a sequence of video frames by using the exemplar-based approach. Conventionally, human pose tracking requires two stages: 1) estimating the 3D pose for a single frame, and 2) using the current estimated pose to predict the pose in the next frame. T...

全面介紹

Saved in:
書目詳細資料
Main Authors: Leong, Mei Chee, Lin, Feng, Lee, Yong Tsui
其他作者: School of Computer Science and Engineering
格式: Conference or Workshop Item
語言:English
出版: 2019
主題:
在線閱讀:https://hdl.handle.net/10356/90230
http://hdl.handle.net/10220/49544
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Nanyang Technological University
語言: English
實物特徵
總結:This study focuses on 3D human motion recovery from a sequence of video frames by using the exemplar-based approach. Conventionally, human pose tracking requires two stages: 1) estimating the 3D pose for a single frame, and 2) using the current estimated pose to predict the pose in the next frame. This usually involves generating a set of possible poses in the prediction state, then optimizing the mapping between the projection of the predicted poses and the 2D image in the subsequent frame. The computational complexity of this approach becomes significant when the search space dimensionality increases. In contrast, we propose a robust and efficient approach for direct motion estimation in video frames by extracting dense appearance and motion features in spatio-temporal space. We exploit three robust descriptors - Histograms of Oriented Gradients, Histograms of Optical Flow and Motion Boundary Histograms in the context of human pose tracking for 3D motion recovery. We conducted comparative analyses using individual descriptors as well as a weighted combination of them. We evaluated our approach using the HumanEva-I dataset and presented both quantitative comparisons and visual results to demonstrate the advantages of our approach. The output is a smooth motion that can be applied in motion retargeting.